Realization of the medium and high vacuum primary standard in CENAM, Mexico

This content has been downloaded from IOPscience. Please scroll down to see the full text.
2005 Metrologia 42 S157
(http://iopscience.iop.org/0026-1394/42/6/S01)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 200.23.51.2
This content was downloaded on 29/03/2016 at 18:50

Please note that terms and conditions apply.
Realization of the medium and high vacuum primary standard in CENAM, Mexico

J C Torres-Guzman¹, L A Santander¹ and K Jousten²

¹ Centro Nacional de Metrología (CENAM), Mexico
² Physikalisch-Technische Bundesanstalt (PTB), Germany

Received 26 August 2005
Published 9 November 2005
Online at stacks.iop.org/Met/42/S157

Abstract
A medium and high vacuum primary standard, based on the static expansion method, has been set up at Centro Nacional de Metrología (CENAM), Mexico. This system has four volumes and covers a measuring range of 1×10^{-5} Pa to 1×10^3 Pa of absolute pressure. As part of its realization, a characterization was performed, which included volume calibrations, several tests and a bilateral key comparison. To determine the expansion ratios, two methods were applied: the gravimetric method and the method with a linearized spinning rotor gauge. The outgassing ratios for the whole system were also determined. A comparison was performed with Physikalisch-Technische Bundesanstalt (comparison SIM-Euromet.M.P-BK3). By means of this comparison, a link has been achieved with the Euromet comparison (Euromet.M.P-K1.b). As a result, it is concluded that the value obtained at CENAM is equivalent to the Euromet reference value, and therefore the design, construction and operation of CENAM’s SEE-1 vacuum primary standard were successful.

1. Introduction
The Centro Nacional de Metrología (CENAM), the Mexican National Metrology Institute, designed a static expansion system as a vacuum primary standard. This was developed in a project within the framework of a technical cooperation between Germany and Mexico. The vacuum section from the Physikalisch-Technische Bundesanstalt (PTB), Germany, helped CENAM in the establishment of this primary standard. The measurement range for this newly established system is 10^3 Pa down to 10^{-5} Pa.

1.1. Measurement principle
The primary standard realizes the static expansion method [1], by which gas is introduced into a previously evacuated volume V_0 up to a pressure p_0, high enough to be measured with high accuracy. After measuring p_0, the gas is expanded into a previously evacuated volume V_f, which is much larger than V_0.

The pressure p_0 will be reduced by the volume ratio between the initial and final volumes, which can be calculated from

$$f = \frac{V_0}{V_0 + V_f}.$$ (1)

When the ideal gas law is applied, including a first order approximation for real gas behaviour, the pressure in the calibration volume is determined from equation (2):

$$p_f = p_0 f \frac{T_f}{T_0} \left(1 + \frac{B_f}{R} \frac{p_f}{T_f} \right),$$ (2)

where T_0 is the gas temperature in the initial volume, T_f the gas temperature in the final volume, $R = 8314$ Pa L (mol K)$^{-1}$ and B_0,f the virial gas coefficients at the conditions in the initial and final volume.

1.2. System description
The Mexican static expansion system (SEE-1) consists of four volumes (see figure 1). The four volumes as described in...
2. Expansion ratio determination

The expansion ratios are the most important parameters in any static expansion system and have to be determined with high accuracy. The SEE-1 expansion ratios were determined by two different methods as follows.

2.1. Gravimetric method

By the gravimetric method, the unknown volume is first measured empty and then filled with distilled water. The mass of distilled water is measured and, from its density at the measured water temperature, the volume occupied by water can be determined.

\[
V = \frac{m_{\text{H}_2\text{O}}}{\rho_{\text{H}_2\text{O}}} \left(1 - \frac{\rho_{\text{air}}}{\rho_{\text{std mass}}} \right)^{-1} \left(1 - \alpha(t - 20)\right).
\]

(3)

The weighting process is repeated typically ten times [3–5]. The volume values and expansion ratios are listed in tables 1 and 2, respectively.

2.2. Spinning rotor gauge method

The spinning rotor gauge (SRG) method is performed by evacuating the system and determining the offset of the SRG. Then, an initial pressure is established in the initial volume \(V_0\). An expansion into the final volume \(V_f\) is performed. Once the expansion has been done, the deceleration ratio is measured (DCR1) and the final pressure at the volume \(V_0\) is measured. The volume \(V_f\) is evacuated again and the retained gas at volume \(V_0\) is expanded; the deceleration ratio reading is taken (DCR2). Under isothermal conditions and with a linearized deceleration ratio DCR2/DCR1 the expansion ratio can be determined as described in [6]. Table 2 shows the values found for the expansion paths by the SRG method.

2.3. Difference in gravimetric and SRG methods

The maximum relative difference between the two methods was below –0.005. Table 4 shows the difference between the two methods for each expansion path.

The average values between the two methods (given in table 2) were chosen as the working values. The uncertainty is the combined uncertainty of the two methods plus their difference (as a rectangular distribution).

3. SEE-1 uncertainty budget

In static expansion systems, the system’s residual pressure is the main cause for the lower end range limit. This lower end pressure is related directly to the system outgassing. In the SEE-1 the residual pressure, after a bake-out at 300 °C for 48 h, is \(10^{-8}\) Pa, with a pressure increase of \(4.81 \times 10^{-11}\) Pa s\(^{-1}\). This corresponds to a specific outgassing of \(4.05 \times 10^{-13}\) Pa L s\(^{-1}\) cm\(^{-2}\). The pressure rise means that, within the time scale of a calibration (5 min), the residual pressure rise will be \(1.44 \times 10^{-8}\) Pa. This is 0.144% of the lowest calibration pressure \(1 \times 10^{-5}\) Pa.

Table 1. SEE-1 volumes with their nominal and measured volumes, and their standard uncertainties in litres.

<table>
<thead>
<tr>
<th>Identification</th>
<th>Nominal volume/L</th>
<th>Measured volume/L</th>
<th>Uncertainty/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_1)</td>
<td>0.5</td>
<td>0.52043</td>
<td>±0.00012</td>
</tr>
<tr>
<td>(V_2)</td>
<td>50</td>
<td>51.0567</td>
<td>±0.0072</td>
</tr>
<tr>
<td>(V_3)</td>
<td>1</td>
<td>0.99268</td>
<td>±0.00012</td>
</tr>
<tr>
<td>(V_4)</td>
<td>100</td>
<td>96.881</td>
<td>±0.016</td>
</tr>
</tbody>
</table>

Table 1 is used to obtain different expansion paths. The calibration volume is \(V_4\), to which the units under calibration are connected. The four volumes allow various expansion paths which are listed in table 2. \(V_c\) is the volume occupied by the fittings and valves between the volumes.

Various pressure ranges can be obtained with the SEE-1 by combining the expansion paths, as shown in table 3.

Table 2. Description of expansion paths.

<table>
<thead>
<tr>
<th>Identification</th>
<th>Expansion path</th>
<th>Value ± uncertainty gravimetric</th>
<th>Value ± uncertainty SRG method</th>
<th>Value used</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_a)</td>
<td>(V_1 \rightarrow V_1 + V_2)</td>
<td>0.0100465 ± 2.7 × 10(^{-6})</td>
<td>0.0100927 ± 3.0 × 10(^{-6})</td>
<td>0.0100969 ± 4.6 × 10(^{-5})</td>
</tr>
<tr>
<td>(f_b)</td>
<td>(V_1 \rightarrow V_1 + V_2 + V_3)</td>
<td>0.0098576 ± 2.6 × 10(^{-6})</td>
<td>0.0098581 ± 2.9 × 10(^{-6})</td>
<td>0.0098578 ± 3.9 × 10(^{-6})</td>
</tr>
<tr>
<td>(f_c)</td>
<td>(V_1 \rightarrow V_1 + V_4)</td>
<td>0.0010989 ± 2.0 × 10(^{-6})</td>
<td>0.0010943 ± 3.0 × 10(^{-6})</td>
<td>0.0010966 ± 5.9 × 10(^{-6})</td>
</tr>
</tbody>
</table>
Comparison of the expansion ratio found by the two different methods. The difference is equal to the value determined by the gravimetric method minus the value determined by the SRG method (see table 2). For the relative difference this value is divided by the gravimetrically determined value.

<table>
<thead>
<tr>
<th>Expansion path</th>
<th>Difference</th>
<th>Relative difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_A</td>
<td>-4.62×10^{-5}</td>
<td>-4.60×10^{-5}</td>
</tr>
<tr>
<td>f_B</td>
<td>-5.07×10^{-3}</td>
<td>-5.07×10^{-3}</td>
</tr>
<tr>
<td>f_C</td>
<td>4.60×10^{-6}</td>
<td>4.55×10^{-6}</td>
</tr>
</tbody>
</table>

A typical uncertainty budget for the SEE-1 is shown in table 5.

For table 5,

$$p_f = p_{0} f \left(\frac{T_f}{T_0} \right) \text{cor} + p_{\text{res}},$$

and

$$\text{cor} = \frac{1 + B f (p_{0} f / R T_f)}{1 + B (p_{0} f / R T_0)}$$

4. Measurement validation

A comparison between PTB and CENAM was performed with the purpose of identifying possible deviations of the generated pressure in SEE-1 against the internationally validated standard of PTB and of checking the assigned uncertainties of the pressures in SEE-1. This comparison [7] was performed according to the CIPM guidelines and was assigned by SIM-Euromet.M.P-BK3. It links in the whole range (3 × 10^{-4} Pa to 0.9 Pa) to the Euromet.M.P-K1.b difference. The comparison consisted in the determination of the accommodation coefficients σ of two SRGs and their respective uncertainties at eight target pressure points (3 × 10^{-4} Pa, 9 × 10^{-4} Pa, 3 × 10^{-3} Pa, 9 × 10^{-3} Pa, 3 × 10^{-2} Pa, 9 × 10^{-2} Pa, 3 × 10^{-1} Pa, 9 × 10^{-1} Pa). Assuming stability of the transfer standards the generated pressures in the two standards could be compared. The stability was checked by two measurements at PTB before and after transportation to CENAM (hand-carried in both directions). The results of these measurements were compatible with the assumption that the transfer standards did not change their σ values due to the transportation.

It appeared that for the same calculated pressures the CENAM generated pressures were about 0.3% higher than the pressures generated at PTB (the values of σ were lower). Figure 2 shows the accommodation coefficients corresponding values for the SRGs at each measuring point. Figure 3 shows the relative pressure differences between CENAM and PTB primary standards.

The CENAM primary standard SEE-1 was equivalent ($E_n < 1$) to the EUROMET reference values over the whole pressure range compared. In most cases $E_n < 0.5$. E_n was calculated from

$$E_n = \frac{p_{\text{CENAM}} - p_{\text{Eur}}}{2 \sqrt{u^2 (p_{\text{CENAM}}) + u^2 (p_{\text{Eur}})},}$$

where p_{Eur} and $u(p_{\text{Eur}})$ are the EUROMET reference value and its standard uncertainty, respectively.

The CENAM primary standard SEE-1 was also equivalent to the CCM reference value at 0.9 Pa.

5. Conclusions

CENAM has established an internationally validated vacuum primary standard for the calibration of vacuum gauges. The system is shown in figure 1. As from the end of year 2004, the SEE-1 started to serve as a link to other SIM national laboratories to verify the compatibility of their measurements.
Figure 2. Results of accommodation coefficient measurements for rotor 1 and rotor 2 for the comparison with SIM-Euromet.M.P-BK3.

Figure 3. The relative difference \(d = (p_{\text{CENAM}}/p_{\text{PTB}}) - 1 \), for the two pressures generated in the two primary standards, as a function of the target pressures in this comparison. Overlap of uncertainty bar with \(d = 0 \) means equivalence of the two standards.

(This figure is in colour only in the electronic version)

References

[7] Jousten K, Santander-Romero L A and Torres-Guzman J C 2005 Results of the key comparison SIM-Euromet.M.P-BK3 (bilateral comparison) in the pressure range from \(3 \times 10^{-4} \) Pa to 0.9 Pa Metrologia 42 Tech. Suppl. 07002

[8] Jousten K, Bergoglio M, Calcatelli A, Durocher J N, Greenwood J, Kangi R, Legras J C, Matilla C and Setina J 2005 Results of the regional key comparison EUROMET.M.P-K1.b in the pressure range from \(3 \times 10^{-4} \) Pa to 0.9 Pa Metrologia 42 Tech. Suppl. 07001