

 Electromagnetismo Temperatura y Propiedades Termofísicas

18-20 de noviembre - Tempo y Frecuencia

MEDICIÓN DE LA CONDUCTIVIDAD TÉRMICA EN MATERIALES SÓLIDOS DE CONSTRUCCIÓN

Leonel Lira Cortes

Laboratorio de Propiedades Termofísicas División Termometría, Área Eléctrica Centro Nacional de Metrología

Electromagnetismo

SE

TR/				
	V = V = V			
	A W & 1		15 T	_

- CONDUCTIVIDAD TERMICA
- TERMOACUSTICA

- VISCOSIDAD
- DIFUSIVIDAD

TERMODINAMICAS

- DENSIDAD
- CAPACIDAD CALORIFICA
- CALOR DE COMBUSTIÓN
- EQUILIBRIO DE FASES
- ENTALPIA

HUMEDAD

SÓLIDOS

GASES

OPTICAS

- EMISIVIDAD
- ABSORTIVIDAD
- INDICE DE REFRACCIÓN

REFLECTIVIDAD

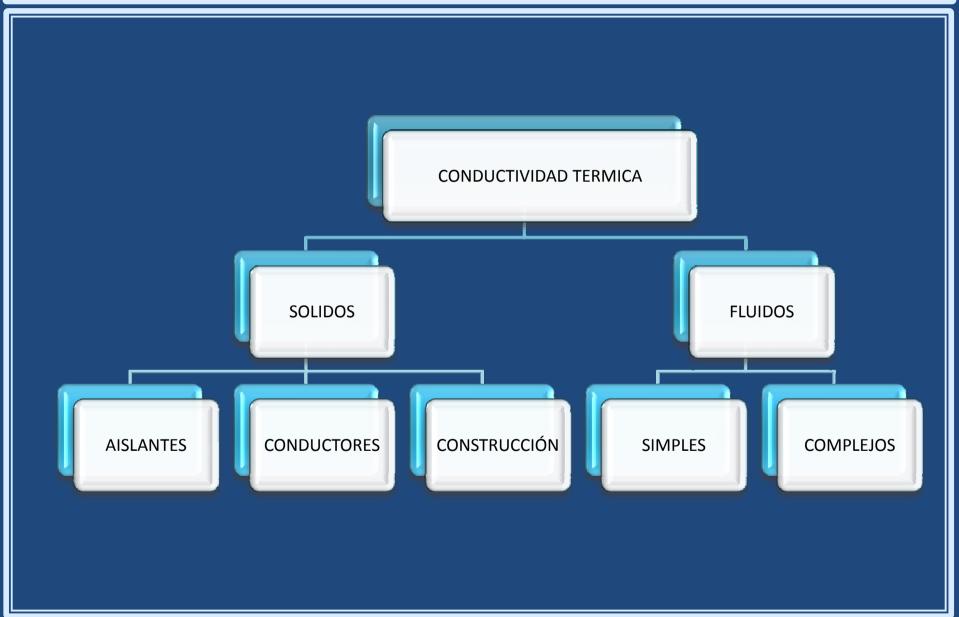
MECANICAS

- DILATACIÓN LINEAL Y VOLUMÉTRICA
- VELOCIDAD DEL SONIDO

ELECTRICAS

- PERMEABILIDAD
- CONDUCTIVIDAD ELECTRICA
- CONSTANTE DIELECTRICA

MAGNETISMO


Electromagnetismo

SE

18-20 de noviembre + Tiempo y Frecuencia

- Electromagnetismo
- Temperatura y Propiedades Termofísicas

SOLIDOS AISLANTES

Aparato Placa Caliente con Guarda – CNM-PNE-16 Patrón Nacional de Conductividad Térmica

ACTIVIDADES

Proyectos:

- MOVIMIENTO DE LAS PLACAS
- FABRICAR PLACA CALIENTE
- >EXTENSIÓN DE ALCANCE EN **ESPESOR**

Servicios:

- >MEDICIÓN DE MATERIALES AISLANTES: 2 %
- MEDICIÓN PARA COMPARACIÓN **BIPM**

Electromagnetismo
Tamperatura v

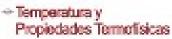
SE

18-20 de noviembre «Tempo y Frecuencia

SOLIDOS CONDUCTORES

Sistema de medición de referencia de barras

Proyectos:


- > EXTENDER ALCANCE 0 °C 600 °C
- ► EXTENDER ALCANCE 0 °C 1000°C
- > SISTEMA PRIMARIO DE MEDICIÓN

- > ALCANCE 0 °C 100 °C
- > ALCANCE 0 °C 300 °C

Electromagnetismo

SOLIDOS DE CONSTRUCCION

PATRÓN DE TRANSFERENCIA

OPCIONES


- 1) Equipos Comerciales desde 590,000.00 hasta 8 712,506.00
- 2) Desarrollo de un equipo para esos materiales
- 3) Uso del Patrón Nacional

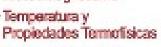
Electromagnetismo

SE

FLUIDOS SIMPLES Y COMPLEJOS

DESARROLLO DE UN MÉTODO PRIMARIO DE HILO **CALIENTE**

Resultado:


✓ Directo: Conductividad térmica λ

✓Indirecto: Difusividad térmica

 Electromagnetismo · Temperatura y

18-20 de noviembre + Tiempo y Frecuencia

SIMPLES

COMPLEJOS

CONDUCTIVIDAD Y DIFUSIVIDAD TERMICA

DENSIDAD

CAPACIDAD CALORIFICA

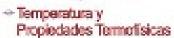
18-20 de noviembre «Tiempo y Frecuencia

Electromagnetismo

SE

GCV

CALORIMETRO ADIABATICO


CALORIMETRO DE **FLUJO**

CALORIMETRO ISOPERBOLICO

Electromagnetismo

MEDICIÓN DE CONDUCTIVIDAD TÉRMICA DE MATERIALES PARA LA CONSTRUCCIÓN

OBJETIVO:

 Medir la conductividad térmica de materiales de construcción que se fabrican o comercializan en México

ALCANCE:

• Materiales con dimensiones y geometría de uso, en el intervalo de 10-50 °C.

Electromagnetismo

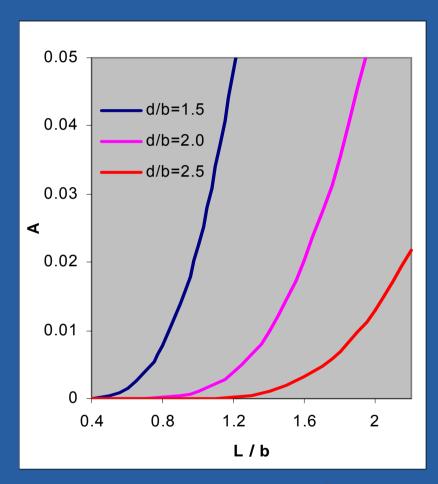
18-20 de noviembre - Tempo y Frecuencia

SOLIDOS DE CONSTRUCCION

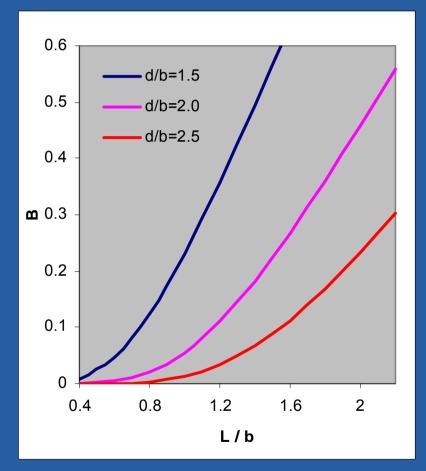
PATRÓN DE TRANSFERENCIA

OPCIONES

- 1) Desarrollo de un equipo para esos materiales
- 2) Uso del Patrón Nacional

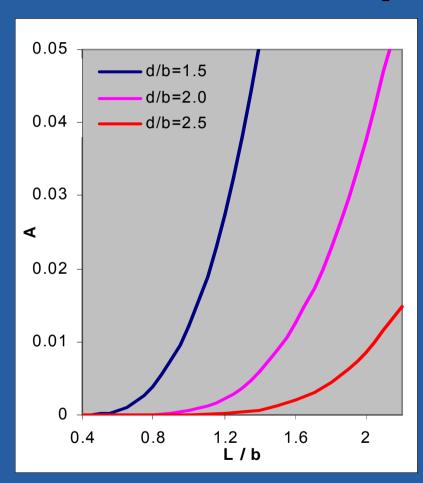

Uso de los criterios de diseño del Patrón Nacional

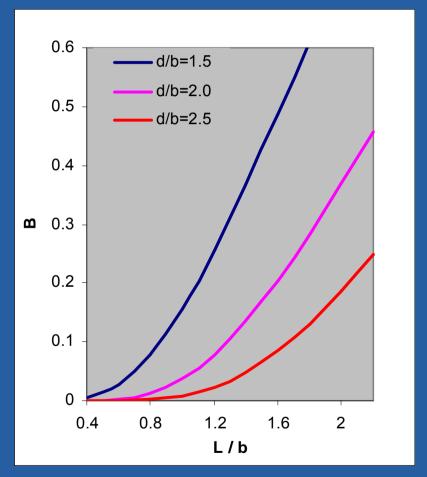
- -Errores de diseño
- -Evaluación de la incertidumbre
- -Dimensiones de un nuevo equipo


Riesgo de degradación del Patrón Nacional y perdida de la cadena trazabilidad si se daña el Patrón

Resultados: EB = A + B X

$$h / \lambda_z = 196.5 \text{ m}^{-1}$$


Figura. Ordenada del efecto de borde A, en función del cociente del espesor de la muestra L, y el radio del área de medición b.


Figura. Pendiente del efecto de borde **B**, en función del cociente del espesor de la muestra L, y el radio del área de medición b.

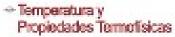
Resultados: EB = A + BX

$$h/\lambda_7 = 49.0 \text{ m}^{-1}$$

Figura. Ordenada del efecto de borde A, en función del cociente del espesor de la muestra L, y el radio del área de medición b.

Figura. Pendiente del efecto de borde **B**, en función del cociente del espesor de la muestra L, y el radio del área de medición b.

8-20 de noviembre - Tempo y Frecuencia


MATERIALES PARA LA CONSTRUCCIÓN

- Panel de poliuretano con PVC de 20 cm de espesor.
- Panel of PVC.
- Ladrillo rojo de 4 cm de espesor.
- Block de construcción de 8,10 y 14 cm de espesor.
- Losa de barro de5 cm de espesor.
- Panel de Yeso de 19 mm. de espesor
- Losa de concreto de 3 y 10 cm de espesor
- Bock de tierra con pasto
- Block de material reciclado

Electromagnetismo

RESULTADOS

Valores de conductividad térmica para algunos materiales con el uso del Patrón Nacional

Muestra	Espesor/ mm	Temperatura/ °C	Conductividad termica / W (K m) ⁻¹	Incertidumbre / W (K m) ⁻¹ (k=2)
Panel de poliuretano	101.7	22.0	0.0551	10 %
Poliuretano con PVC	105.0	18.1	0.0244	10 %
Aislante SRM1450	25.48	27.7	0.0340	1.5 %
Poliestireno	23.5	28.8	0.0326	1.5 %
Yeso	17.8	7.7	0.178	5 %
Ladrillo	100.5	29.45	0.391	10%

- Electromagnetismo
- Temperatura y Propiedades Termofisicas

SE

MATERIALES

Construcción

Aislante

 Electromagnetismo Temperatura y Propiedades Termofísicas

CONCLUSIONES

- Se midió la conductividad térmica de materiales para construcción como ladrillos, block, yeso, etc.
- Para realizar las mediciones y evaluar la incertidumbre se utilizaron los criterios de diseño del instrumento y el Patrón Nacional de Conductividad térmica
- Para reducir la incertidumbre es necesario diseñar y construir un nuevo instrumento para manejar muestras de gran espesor.

Electromagnetismo

 Temperatura y Propiedades Termofísicas

→ Tiempo y Frecuencia

Trabajo futuro

 Diseño, Construcción y Caracterización de un instrumento de 600 mm para la medición de materiales de aislantes y de construcción con espesores de hasta 20 cm con incertidumbres del orden del 4 % o menores.

- Electromagnetismo
- Temperatura y Propiedades Termofísicas

AGRADECIMIENTOS

- M.C. Saul Garcia Duarte
- Dr. Edgar Mendez-Lango
- Ing. Oscar Jesus González Rodriguez

- Electromagnetismo
- → Temperatura y Propiedades Termofisicas

Gracias por su Atención