High-accuracy radiation thermometry at the Physikalisch-Technische Bundesanstalt (PTB)

D. R. Taubert, K. Anhalt, B. Gutschwager, C. Monte, J. Hartmann, J. Hollandt

Overview

Introduction

- Low- / mid-temperature calibration facility
- High-temperature calibration facility
 - **High-temperature eutectic fixed-points**
 - Summary

Introduction

Temperature

- governs most production processes in industry
- crucial for optimized productivity and quality assurance

frequent measurement technique – radiation thermometry

annual growth rate: more than 10%
600,000 radiation thermometers sold / year
15,000 thermography systems sold / year
market volume: > 1 billion €

Introduction

Increased demand of calibrations in the field of radiation thermometry

PTB operates two calibration facilities:

- Low-/ mid-temperature calibration facility; temperature range: -60 °C to 962 °C
 - High temperature calibration facility; temperature range: 900 °C to 3000 °C
 - **Realization and dissemination of radiation temperatures**

schematic view

Encuentro Nacional de *Electromagnetismo Metrología Eléctrica 2009 *Temperatura y Propiedades Temperatura y Propiedades Temper

smo se a emotisicas vencia DGN

cross-section of sodium / cesium heat-pipe blackbody

- heater temporal stability: 0.1 K
- heat-pipe temperature stability: 10 mK

cross-section of H₂O / NH₃ heat-pipe blackbody

heat-pipe temperature stability: 10 mK

PTB heat-pipe blackbodies

N	Blackbody	Temperature range / °C	Cavity diameter / mm	Cavity Emissivity
	NH ₃ -BB	-60 to 50	60	0.99990 ± 0.00006
L I	H ₂ 0-BB	50 to 270	60	0.99980 ± 0.00015
	Cs-BB	270 to 650	41	0.99960 ± 0.00017
TIE	Na-BB	500 to 962	41	0.99960 ± 0.00017
2	11 13			

Encuentro Nacional de *Eetomagnetsmo Metrología Eléctrica 2009 *Temperatura y Projektades Temper

Encuentro Nacional de Electromagnetismo Metrología Eléctrica 2009 emperatura y de noviembre - Tiempo y Frecuencia

radiation temperature standard uncertainties (*k*=1)

Radiation temperature / °C		Uncertainty of radiation temperature / °C		
	1.6 µm	3.9 µm	10 µm	
-60	2	0.1	0.035	
0	0.035	0.035	0.035	
50	0.035	0.035	0.035	
100	0.035	0.035	0.035	
200	0.08	0.08	0.08	
300	0.1	0.10	0.10	
400	0.02	0.03	0.05	
600	0.03	0.05	0.08	
800	0.06	0.07	0.11	
960	0.08	0.10	0.14	

Encuentro Nacional d Electromagnetism Metrología Eléctrica 20 Tiempo y Frequencia

High temperature scale

Realization and dissemination of radiation temperature scale above the Ag-FP (961.78 °C):

- Gold fixed-point (Au-FP) blackbody radiator: 1064.18 °C
- High temperature blackbody (HTBB):
 variable temperature, 900 °C to 3000 °C
- High quality transfer standard radiation thermometers (LP3)
- Tungsten strip lamps operated as radiation temperature standards

Gold fixed-point blackbody

Gold fixed-point blackbody

freezing plateau

Tiempo y Frequencia

High Temperature Blackbody (HTBB 3200pg)

Tiempo y Frecuencia

PTB primary standard

- Radiation temperature above the Ag-FP
- Spectral radiance

- directly Joule-heated cavity (DC, 700 A max.)
- operating temperature range: 1000 K to 3200 K
- temporal stability: better than 250 mK
- large aperture diameter : 20 mm
- $\varepsilon = 0.999 \pm 0.001$

Linear pyrometer LP3

schematic view

Transfer radiation thermometer for: International scale comparisons

Internal high-temperature scale dissemination

Main characteristics:

- $\lambda_{\rm eff} = 650 \, \rm nm \, (950 \, \rm nm)$
- Temperature range: 800 °C to 2900 °C
- FOV: 0.8 mm Ø at 690 mm
- Good stability and linearity
- Small SSE

$$I_{\text{photo}}(T) = C \cdot \exp\left(-\frac{C_2}{A \cdot T + B}\right)$$

Standard uncertainty: 0.3 °C at 800 °C to 1.0 °C at 2900 °C

Encuentro Nacional de Electromagnetism Metrología Eléctrica 20 Propiedades Termofísicas Tiempo y Frecuencia

15aniversario

High temperature scale – realization and dissemination

Tiempo y Frecuencia

Spectral radiance comparator facility

CENAM

Encuentro Nacional de Electromagnetismo Metrología Eléctrica 2009 de noviembre - Tiempo y Frecuencia

Propiedades Termolísicas

Spectral Radiance Comparator Facility

Encuentro Nacional de Electromagnetismo Metrología Eléctrica 2009 noviembre - Tiempo y Frecuencia

ITS-90 and high-temperature fixed points

Eutectic fixed-point blackbodies

Metal-Carbon-Fixed points in graphite crucibles

- crucible material is part of the fixed point material
- no contamination through crucible material
- higher stability 4

4

better reproducibility

Design / construction of eutectic fixed-point blackbodies

Anhalt et al. (2008) Large- and small- aperture fixed-point cells of Cu, Pt-C, and Re-C International Journal of Thermophysics, 29(3), pp. 969 - 983.

Encuentro Nacional de Metrología Eléctrica 2009

the same length/diameter 4 ratio of the cavity

Both fixed-point cells

designs have:

- a calculated emissivity 4 0.9997
- several layers of C/C sheet insulation

the same outer diameter

Eutectic fixed-point cell relative comparison

Tiempo y Frecuencia

2 identical furnaces2 radiation thermometer LP315 fixed point cells

(NMIJ, BNM-INM, NPL)

de noviembre

- Tiempo y Frecuencia

DG

Thermodynamic temperature determination

radiance comparison method

- 1. HTBB temperature ~ T_{melt}
- 2. Measurement of thermodynamic temperature of HTBB with FR

Thermodynamic temperature determination

- radiance comparison method
- HTBB temperature ~ T_{melt} 1.
- Measurement of thermodynamic temperature of HTBB with FR 2.
- 3. Spectral radiance measurement of the HTBB with the LP3

Thermodynamic temperature determination

radiance comparison method

- HTBB temperature ~ T_{melt} 1.
- Measurement of thermodynamic temperature of HTBB with FR 2.
- 3. Spectral radiance measurement of the HTBB with the LP3
- Spectral radiance measurement of the eutectic cell in the Nagano furnace with the LP3 4.

Thermodynamic temperature determination / relative comparison

Anhalt et al.

Thermodynamic temperature determinations of Co-C, Pd-C, Pt-C and Ru-C eutectic fixed-point cells Metrologia, 43, 2006, pp. S78-S83

Absolute temperature comparison NIST – PTB using NPL cells

	РТВ	<i>U, k</i> =2	NIST	<i>U, k</i> =2	PTB-NIST	<i>U</i> (PTB/NIST), <i>k</i> =2
Co-C	1597.16	0.22	1597.43	0.17	-0.27	0.28
Pd-C	1765.02	0.27	1764.95	0.21	0.12	0.34
Pt-C	2011.67	0.32	2011.21	0.27	0.53	0.42
Ru-C	2227.12	0.41	2226.74	0.34	0.48	0.52

Encuentro Nacional de Metrología Eléctrica 20

Summary

- PTB instrumentation and experimental techniques for the realization and dissemination of the temperature scale with optical methods
- Low-/ mid-temperature calibration facility: -60 °C to 962 °C High temperature calibration facility: 962 °C to 3000 °C
- **Standard uncertainty of the disseminated radiation temperature:** 40 mK at - 60 °C 10 mK at the Au-FP (1064.18 °C) 1000 mK at 3000 °C
- Achievable standard uncertainties for radiation thermometer calibrations: 60 mK at - 60 °C 30 mK at 400 °C 1000 mK at 3000 °C
 - **PTB** meets all industrial requirements in the range from -60 °C to 3000 °C

Emissivity determination at the PTB in the temperature range from 0 °C to 600 °C

C. Monte, M. Becker, B. Gutschwager, E. Kosubek and J. Hollandt

Outline

- Motivation for an accurate emissivity determination 4
- **Experimental setup for emissivity measurement in air** 4
- Uncertainty
- New experimental setup for emissivity measurement under vacuum 4
- **Summary**

Motivation

Variability of INCONEL 600 samples

- Preparatory work for the spectral emissivity pilot study of CCT-WG9
- Identical sample preparation, two different sample manufacturers

Only individual emissivity determination allows an accurate temperature measurement

Encuentro Nacional de Electromagnetismo Metrología Eléctrica 2009 noviembre Tiempo y Frecuencia.

Spectral emissivity measurement in air - setup

Measurement principle:

- Ratio of the spectral radiance of the sample / spectral radiance of the reference blackbody **.**
 - Radiance of the detector / surrounding
- Reflectivity of the sample **.**

Spectral emissivity measurement ranges (air)

80 °C to 430 °C Temperature range: Wavelength range: 4 µm to 40 µm (2500 cm⁻¹ to 250 cm⁻¹) Direction of observation: 0° to 70° Size of measured area: circular, 10 mm diameter Acceptance angle of the optics: +/- 3°, NA 0.05 Homogeneity (camera): circular measurement area, 20 mm diameter The directional total emissivity and the hemispherical emissivity

are calculated from the directional spectral emissivity

Encuentro Nacional de *Eedom Metrología Eléctrica 2009 *Tempera 18-20 de noviembre *Temov

Spectral emissivity measurement in air - example

High-emissivity coating at 250 °C

Application: reference coating for radiation thermometry up to 800 °C

Uncertainty

Emissivity measurement under vacuum - setup

Emissivity measurement under vacuum - setup

Emissivity measurement under vacuum

Measurement principle:

measurement of the sample against two blackbodies at two different temperatures

Advantage of the method:

the background radiation, the warm components of the FT-spectrometer and the spectral responsivity of the detection system are cancelled

15aniversario CENAM

Encuentro Nacional d Aetrología Eléctrica

Summary

- Determination of the directional spectral emissivity in air in the temperature range from 80 °C to 430 °C (4 µm to 40 µm)
- Determination of the directional spectral emissivity under vacuum in the temperature range from 0 °C to 600 °C (1µm to 1600 µm)
- Determination of the total and hemispherical emissivity
- Standard uncertainty for the emissivity 1% for samples with an emissivity > 0.3 and a sample temperature starting from 150 °C

