Bobina Rogowski como sensor de corriente para monitoreo de transformadores de distribución.

Sergio A. Campos Montiel⁽¹⁾, René D. Carranza López Padilla⁽¹⁾, Adrián González Parada⁽²⁾
¹⁾ Centro Nacional de Metrología, CENAM. km 4,5 Carretera a los Cués, Municipio El Marqués, 76246 Querétaro, México <u>acampos@cenam.mx</u>, <u>rcarranz@cenam.mx</u>
²⁾ Dpto. de Ingeniería Eléctrica, DICIS Universidad de Guanajuato. <u>gonzaleza@salamanca.ugto.mx</u>

Contenido.

- 1. Introducción.
- 2. Desarrollo.
 - 2.1. Bonina Rogowski.
 - 2.2. Principio de funcionamiento.
 - 2.3. Características geométricas y eléctricas.
 - 2.4. Respuesta en frecuencia.
 - 2.5. Método de integración.
- 3. Caracterización y resultados.
- 4. Conclusiones.
- 5. Trabajo a futuro.
- 6. Referencias.

1. Introducción.

1. Introducción.

Estadística de fallas de transformadores de potencia 1983-1998, Comisión Federal de Electricidad, Marzo 1999.

¿Cual es la principal causa del problema en el aislamiento de los devanados de los transformadores de distribución?

- 1. La demanda de energía eléctrica al transformador de distribución.
- 2. Incremento de la corriente eléctrica circulante en sus devanados.
- 3. El incremento de la temperatura de operación que provoca envejecimiento prematuro de sus materiales aislantes

Evitar que el instrumento exceda sus límites máximos de operación aumenta su vida útil, se pueden prevenir futuras fallas.

El objetivo de este trabajo es el estudio y desarrollo de un transductor de corriente no intrusivo para la medición y el monitoreo de la amplitud de la corriente eléctrica en los devanados primario y secundario de los transformadores de distribución.

2. Desarrollo.

Una bobina Rogowski es un embobinado de área transversal constante que se construye sobre un material diamagnético.

2.1. Bobina Rogowski continuación...

- 1) Alta linealidad.
- 2) Amplio ancho de banda.
- 3) Sistema de medición no intrusivo y de fácil instalación.
- 4) Aislación eléctrica.
- 5) Tiempo de respuesta.
- 6) Tolerancia a sobre corrientes.
- 7) Problemas de componentes de frecuencia cero, saturación del núcleo e histéresis.
- 8) Bajo coeficiente térmico.
- 9) Bajo consumo de potencia.

2.2. Principio de funcionamiento.

Si la bobina Rogowski forma un circuito cerrado en torno a la corriente a ser medida *I*, entonces la tensión inducida *E* en la bobina es teóricamente independiente de su forma y de la posición del conductor de corriente dentro de esta.

2.2. Principio de funcionamiento continuación...

- E es la tensión inducida
- H es la sensibilidad de la bobina (Vs/A)
- μo es la permeabilidad magnética del núcleo
- N es el número de vueltas
- A es el área de una vuelta (m²)

2.3. Características geométricas y eléctricas.

Los cálculos se basan en la hipótesis de que la resistencia (R), la Inductancia propia e inductancia mutua de la bobina (L, M) y la capacitancia (C) se distribuyen homogéneamente a lo largo de la bobina.

2.3. Características geométricas y eléctricas continuación...

- > Longitud y diámetro del cable de cobre: *I*₁, *S*₁
- > Longitud y área transversal del núcleo: I_2 , S_2
- > Número de vueltas: N
- \succ Resistividad del cobre: ρ
- > Permeabilidad magnética del núcleo: µo
- ➢ Permitividad eléctrica del núcleo: εο

$$R = \rho \cdot \frac{l_1}{\pi \cdot \left(\frac{d_1}{2}\right)^2} \qquad M = \mu_0 \cdot \frac{N}{l_2} \cdot S_2 \qquad C = \frac{16 \cdot \varepsilon \cdot l_2}{\pi \cdot \ln \left(\frac{S_2}{\pi \cdot \left(\frac{d_1}{2}\right)^2}\right)}$$
$$L = \mu_0 \cdot \frac{N^2}{l_2} \cdot S_2 \qquad AB = \frac{1}{2 \cdot \pi \cdot \sqrt{L \cdot C}}$$

Encuentro Nacional de Metrología Eléctrica 2009 * Temperatura y Propiedades Termofísicas 18-20 die noviembre * Tempo y Frecuencia

2.3. Características geométricas y eléctricas continuación...

2.3. Características geométricas y eléctricas continuación...

Bobina Rogowski	Número de capas	Número de vueltas [N]	Longitud [m]	Área transversal [m²]	R [Ω]	L [H]	C [F]	Sensibilidad [µVs/A]	Ancho de banda [MHz]
1	1	2525	0,36	7,548E-06	23,79	1,680E-04	2,636E-12	21	7,563
2	1	2525	0,36	9,503E-05	84,14	2,115E-03	1,868E-12	89	2,532
3	1	1353	0,23	9,503E-05	31,74	9,505E-04	1,244E-12	221	4,629
4	1	2525	0,36	9,503E-05	84,14	2,115E-03	1,868E-12	268	2,532
5	2	2874	0,23	9,503E-05	75,98	4,289E-03	1,226E-12	494	2,195
6	4	7496	0,30	9,503E-05	198,16	2,237E-02	1,599E-12	1081,4	0,842
7	6	9816	0,36	1,068E-04	145,67	3,591E-02	2,044E-12	1611,5	0,587

La respuesta en frecuencia de la bobina Rogowski se obtuvo de su función de transferencia y de sus parámetros eléctricos calculados.

 $R = 84,14 \quad (\Omega)$ $L = 2,115E-03 \quad (H)$ $C = 1,868E-12 \quad (F)$

2.4. Respuesta en frecuencia continuación...

Electromagnetismo SE succession. Temperatura y Propiedades Termofísicas DG

La tensión inducida E en los extremos de la bobina, corresponde a la variación en el tiempo del flujo magnético que cruza el área transversal de esta. La integral de la tensión E en el tiempo, recupera la información de la corriente medida. Con una constante de tiempo de integración, *Ti*.

Tiempo y Frecuencia

noviemb

Encuentro Nacional de Metrología Eléctrica 2009 * Temperatura y Propiedades Termotis 18-20 die noviembre * Tempo y Frocuencia

DERECHOS RESERVADOS 2009

Encuentro Nacional de *Electromagnetismo Metrología Eléctrica 2009 *Temperatura y Propiedades Termofísicas 18-20 die noviembre *Tempo y Frecuencia

Encuentro Nacional de Metrología Eléctrica 2009 -20 de noviembre + Tempo y Frecuencia

3. Caracterización y resultados.

Encuentro Nacional de Electromagnetismo Temperatura y - Tiempo y Frecuencia

3. Caracterización y resultados.

Error absoluto =
$$I_{med} - I_{ref}$$

CENTRO NACIONAL DE METROLOGÍA

DERECHOS RESERVADOS 2009

- Tiempo y Frecuencia

CENTRO NACIONAL DE METROLOGÍA

Encuentro Nacional de Metrología Eléctrica 2009 Electromagnetismo Temperatura y 8-20 de noviembre - Tempo y Frocuencia

Encuentro Nacional de Metrología Eléctrica 2009 8-20 de noviembre - Tempo y Frocuencia

	Corriente	Corriente	Erro	or abso	luto
Posición del	comente	de		е	
conductor de	meulua	referencia	inc	ertidum	nbre
corriente	I _{med}	l _{ref}	k = 2,0		
	[A]	[A]	[A]		
Centro	50,0	50,0	0,0	+	0,5
0 °	50,1	50,0	0,1	+	1,0
90 °	50,3	50,0	0,3	+	1,0
180°	49,4	50,0	-0,6	+	1,0
270 °	50,2	50,0	0,2	+	1,0

Encuentro Nacional de Electromagnetismo Metrología Eléctrica 2009 Temperatura y -20 de noviembre + Tempo y Frecuencia

Corriente	Corriente Error absoluto			luto
modida	de	е		
mediua	referencia incertidumbr			bre
l _{med}	I _{ref}	k = 2,0		
[A]	[A]		[A]	
10,0	10,0	0,0	±	0,1
20,0	20,0	0,0	±	0,2
30,0	30,0	0,0	±	0,3
40,0	40,0	0,0	±	0,4
50,0	50,0	0,0	<u>±</u>	0,5
59,9	60,0	-0,1	+	0,6

Corriente aplicada: 20 A / Frecuencia: 60 Hz

Derivador de corriente

Canal 1: 200 mV

Transductor de corriente Canal 2: 20 mV

Tiempo: 10 ms

Tensión entregada por el transductor $\approx 20 \text{ mV}$

Error absoluto = $I_{med} - I_{ref}$

Electromagnetismo Metrología Eléctrica 2009 Temperatura y Propiedades Termofísicas 8-20 de noviembre - Tempo y Frocuencia

Encuentro Nacional de Metrología Eléctrica 2009 Electromagnetismo -20 de noviembre - Tempo y Frecuencia

Corriente	Corriente de	Error absoluto e		uto e
medida	referencia	incertidumbre		
l _{med}	l _{ref}		k = 2,0	
[A]	[A]		[A]	
69,9	70,0	-0,1	±	0,7
79,9	80,0	-0,1	+	0,8
89,9	90,0	-0,1	+	0,9
100	100	0,0	+	1,0
150	150	0,0	+	1,5
200	200	0,0	+	2,0
250	250	0,0	+	2,5
300	300	0,0	+	3,0
350	350	0,0	+	3,5
400	400	0,0	±	4,0
450	450	0,0	±	4,5
500	500	0,0	±	5,0

20 de noviembre - Tempo y Frecuencia

Corriente aplicada: 8 A / Frecuencia: 60 Hz Corriente amplificada: 400 A vuelta / Frecuencia 60 Hz Derivador de corriente Transductor de corriente Canal 1: 100 mV Canal 2: 500 mV Tiempo: 10 ms Tensión entregada por el transductor $\approx 400 \text{ mV}$ M Post 0.000s Tig'i T Trig'd M Pos: 0.000s Fuente Fuente Tipo CH2 16-0 Vrms-ciclo 400mV CH2 CH2 recuencia CHO CH2 Período 6.6400 16.76ms CH2 CH2 Vpico-pic 00-1.18 100mi/by CH2 S00m/bla M 10.0ms CH1. CH1 100mV CH2 500mV M 10.0ms CH1 / 5.70mV

Temperatura y

Encuentro Nacional dr noviembre

La instrumentación presentada al ser no intrusiva, no afecta el funcionamiento del transformador de distribución, por lo que reduce el costo de su instalación.

Es importante de realizar una correcta instalación del transductor de corriente para evitar errores en la medición debidos a la posición del conductor de corriente.

Los resultados obtenidos indican que el transductor de corriente desarrollado es adecuado para la medición y monitoreo de la corriente eléctrica en las terminales de los devanados primario y secundario de un transformador de distribución.

La siguiente etapa de este proyecto, se enfoca en la instalación del transductor de corriente construido, con el objetivo de analizar y evaluar su desempeño en las condiciones ambientales y de operación a las que se encuentra sometido un transformador de distribución.

6. Referencias.

- [1] Luka Ferković, Damir Ilić and Roman Malarić, Mutual inductance of a precise Rogowski coil in dependence of the position of primary conductor, IEEE Transactions on Instrumentation and Measurement, Vol. 58, No. 1, 2009, 122-128.
- [2] Ehsan Abdi-Jalebi, Richard McMahon, High-performance low-cost Rogowski transducers and accompanying circuitry, IEEE Transactions on Instrumentation and Measurement, Vol. 56, No. 3, 2007, 753-759.
- [3] C. R. Hewson, W. F. Ray and R. M. Davis, Verification of Rogowski current transducer's ability to measure fast switching transients", Applied Power Electronics Conference and Exposition, Twenty-First Annual IEEE, 2006, 573-579.
- [4] Marta Argüeso Montero, Estudio de una bobina de Rogowski como sonda detectora de pulsos de alta frecuencia, Tesis Doctoral, Universidad Carlos III de Madrid, Departamento de Ingeniería Eléctrica, 2005.
- [5] Ray W. F., Davis R. M., High performance Rogowski current transducers, Industry Applications Conference, Conference Record of the 2000 IEEE Vol. 5, 2000, 3083 – 3090.

6. Referencias continuación...

- [6] Ray W. F., Davis R. M., Practical aspects of Rogowski current transducer performance, Power Electronic Measurements Ltd., Nottingham U.K.
- [7] Ray, W.F., Hewson, C.R., Metcalfe, J.M., High frequency effects in current measurement using Rogowski coils, Power Electronic Measurements Ltd., Nottingham U.K.
- [8] Ray W. F., Davis R. M., Coil and cable behavior for Rogowski current transducers", Power Electronic Measurements Ltd., Nottingham U.K.
- [9] Ray W. F., Davis R. M., Wide bandwidth Rogowski current transducers: Part 1 – The Rogowski coil", EPE Journal, Vol. 3, No. 1, 1993, 51-59.
- [10] Ray W. F., Davis R. M., Wide bandwidth Rogowski current transducers: Part 2 – The Integrator", EPE Journal, Vol. 3, No. 2, 1993, 116-122.
- [11] David E. Shepard, Donald W. Yauch, An overview of Rogowski coil current sensing technology, LEM DynAmp Inc., 3735 Gantz Road, Grove City, Ohio 43123.

jGracias por su atención!

 ◆ Electromagnetismo
 ◆ Temperatura y Propiedades Termofísicas
 ◆ Tiempo y Frecuencia