Necesidades y Retos para la Implementación de un Laboratorio de Electrónica RF y Comunicaciones Móviles

Dr. Javier E Gonzalez Villarruel
Consultor RF

Jav_Gonza01@yahoo.com

NOTA. El Centro Nacional de Metrología no es responsable del contenido de este documento. Para cualquier duda o aclaración favor de dirigirse con el autor.

PRESENTACION

- Introducción
- Aplicaciones
- Dispositivos electrónicos portátiles
- RF
- Normalización inalámbrica
- Importancia del diseño RF
- Desarrollo RF
- Funcionalidad en RF
- EMC y EMI
- Conclusión

PLANTEAMIENTO

- Demanda creciente +20% de servicios móviles e inalámbricos
 - Interés en tecnología RF, grandes inversiones futuras \$\$\$ mercado de bluetooth 1.2 B
 - Demanda creciente de dispositivos electrónicos portátiles
 - +información, +acceso, +conectividad
 - Aplicaciones futuras, redes de sensores:
 - Telemetría, seguridad, industria, salud
 - Zigbee, Bluetooth, IEEE
 - Nuevos dispositivos electrónicos portátiles:
 - + compactos, + funciones, + inmunes a interferencias, acceso a + plataformas, + capacidad de procesamiento, + vida de batería
 - Conocimiento del diseño RF
 - Necesidad de laboratorios en RF

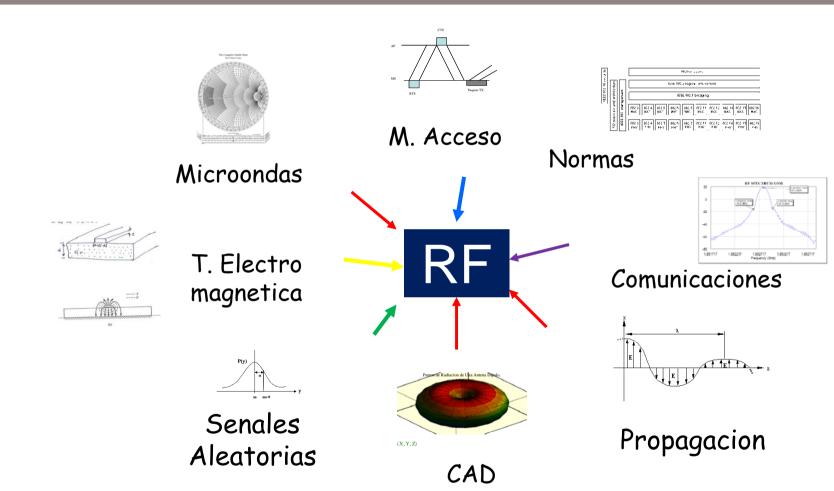
APLICACIONES MOVILES E INALAMBRICAS

- Voz
- Internet
- Inventarios
- Telemetría
- Salud
- Automotriz
- Identificación
- Localización

- Instrumentación remota
- Control remoto universal
- Juegos
- Música
- Otros a venir

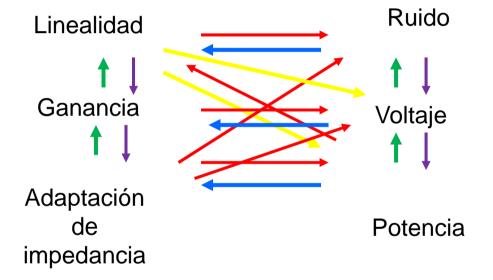
DISPOSITIVOS ELECTRONICOS PORTATILES

- Dos secciones: Banda Base y RF
- Banda Base :
 - Funciones integradas, millones de transistores, múltiples funciones
- RF: limita el desarrollo
 - Pocos transistores, pocas funciones, elementos discretos, mayor consumo de batería, mayor espacio, requiere técnicas de acoplamiento de señales


RF... DIFICULTAD PARA EL DESARROLLO

- Gran cantidad de las aéreas requeridas para el diseño e integración
- Proceso de diseño muy complejo
- Herramientas CAD muy limitadas lo que produce baja predicción
- Requiere gran numero de mediciones y pruebas especializadas para realizar el diseño

RF... AREAS REQUERIDAS



RF... PROCESO DE DISENO

RF... Herramientas CAD

- _
- Disponibilidad limitada baja integración de funciones: temporal, lineal, no lineal, digital, electromagnético = baja predicción
- Necesidad de simulaciones en varias plataformas
- A desarrollar, electromagnéticas, propagación multicapas
- Gran variedad de materiales de transmisión y tecnologías
- Gran cantidad de elementos parásitos que dificultan la simulación
- Mas complejo al aumentar la frecuencia....
- Aplicaciones de desarrollo: antenas planas integradas ..

NORMALIZACION INALAMBRICA

- Muy bien aceptada
- Permite el consenso entre la industria
- Organismos internacionales ISO, IEEE, ANSI, ETSI
- Organismos de normalización
- EMC y EMI
- Colaboración entre instituciones para desarrollar aplicaciones laboratorios
 - Verificación, desarrollo e integración

IMPORTANCIA DEL DISENO RF

- Capacidad de radiar y captar energía = movilidad de dispositivos
- Nuevas aplicaciones
 - saturación del espectro electromagnético, múltiples interferencias, medio hostil
- Banda 300 MHz a 3 GHz
- Nuevas aplicaciones
 - desarrollo que respeten legislación de emisiones Tx/Rx funcionamiento
 Rx con + interferencias,+ procesamiento
- Mas aplicaciones
 - Celular, Bluetooth, Zigbee, WLANS, WPANS ...
- Conocimiento de la industria sobre nociones RF, EMC y EMI
- Laboratorios de desarrollo RF
 - Integración, desarrollos, pruebas, normas

DESARROLLO DE SISTEMAS RF

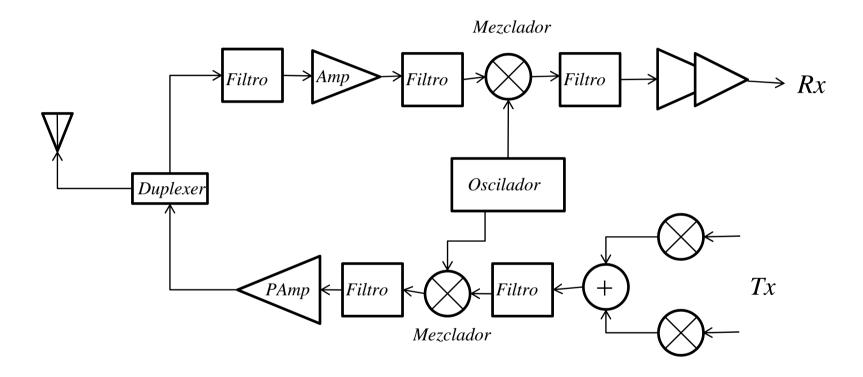
Laboratorio RF

- Integrar aéreas de conocimiento, entender proceso de diseño, instrumentación, normas ...
- Aplicación
 - Norma inalámbrica
 - Viabilidad
 - Disponibilida d de tecnología y componentes

- Plataforma
- Arquitectura
- Plan de frecuencias
- Definición de las funciones del sistema

- Funciones
 - Diseño
 - Integración
 - Medición
- EMC-EMI
- Norma
- Pruebas
- Medición

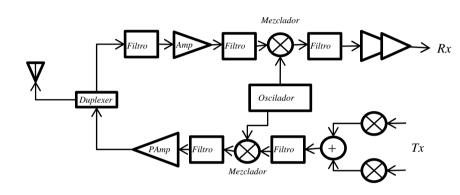
- Integración
 - Pruebas de sistema
 - Verificación de la norma



DESARROLLO ... ARQUITECTURA RF

DESARROLLO ... FUNCIONES RF

Sección RF							
Función	Medición	Impacto					
Filtrado	Respuesta en frecuencia y adaptación	Selectividad, desviación de la banda, retardo d grupo, distorsión de la modulación					
Amplificación RX	Adaptación, ganancia y distorsión	Balance entre sensibilidad e intermodulación, y figura de ruido					
Amplificación TX	Adaptación, ganancia y distorsión	Potencia de salida, emisiones no deseadas, distorsión de la modulación					
Traslado de frecuencia	Ganancia, distorsión	Clave en recepción, aislamiento de RF-IF-LO, balance entre ruido e intermodulación					
Oscilador local Potencia, ruido de fase, estabilidad		Selectividad del canal móvil, selectividad, EMC					



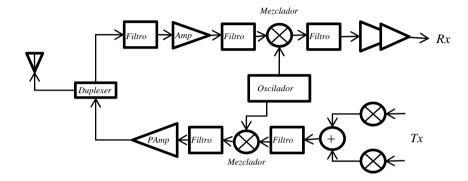
DESARROLLO... ANALISIS DEL SISTEMA

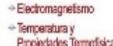
- Rx: Antena, Filtro, Amplificador, Filtro, Mezclador, Filtro
- Tx: Modulador, Filtro, Mezclador,
- Valores cumulativos

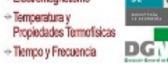
$$F_{T} = F_{1} + \frac{F_{2} - 1}{G_{1}} + \frac{F_{3} - 1}{G_{1}G_{2}} + \dots + \frac{F_{n-1} - 1}{G_{1}G_{2}\dots G_{n}}$$

$$\frac{1}{IPO_{total}^{\frac{m-1}{2}}} = \left[\left(\frac{1}{G_2 \cdot IPO_1} \right)^{\frac{m-1}{2}} + \left(\frac{1}{IPO_2} \right)^{\frac{m-1}{2}} \right] \qquad G_T = G_1 + G_2 + G_3 \dots$$

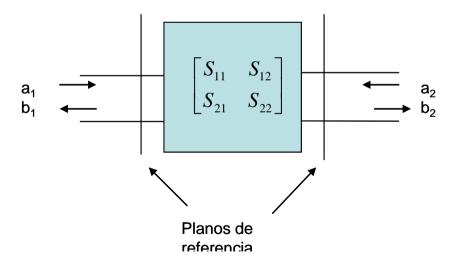
$$G_T = G_1 + G_2 + G_3...$$




DESARROLLO... SISTEMA

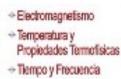


		Antenna		Diplexer		TX/RX		SAW		LNA		SAW		Mixer
		feed				Switch		Filter				Filter		
Parametros-	1	2	3	4	5	4	7	12	9	10	11	12	13	14
Ganancia (dB)		-0,5		-0,35		-0,4		-1,5		14,5		-1,5		16,5
F(dB)?		0,50		0,35		0,40		1,50		1,00		1,50		5,80
IP3in (dBm)?		60,00		60,00		46,00		30,00		3,00		30,00		3,50
F en cascada (di	3) =	0,5		0,85		1,25		2,75		3,75		3,8002		4,2545

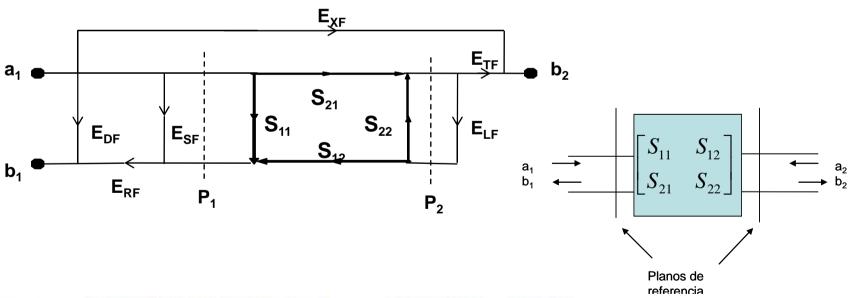


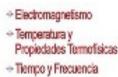
DESARROLLO EN RF... MEDICIONES

- Matriz [S], ondas electromagnéticas incidentes (progresivas) y reflejadas (regresivas)
- S11 y S22) coeficientes de reflexión de los accesos
- S12 y S21) coeficientes de transmisión

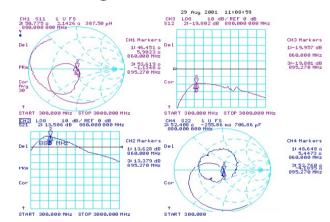


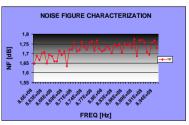
$$\begin{bmatrix} b_i \\ b_2 \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$$

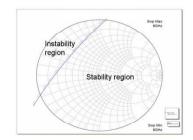



DESARROLLO EN RF... ERRORES DE MEDICION

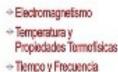
- Se requiere calibrar el banco de medidas, patrones, métodos de corrección
- Errores en las mediciones: aleatorios y sistematicos
- Sistematicos 6 en una direccion, 12 en dos direcciones
- Medidas ajustadas a los planos de referencia

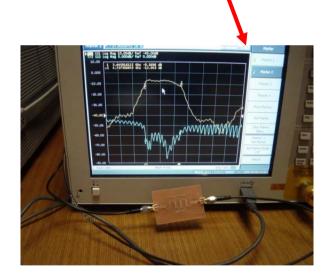


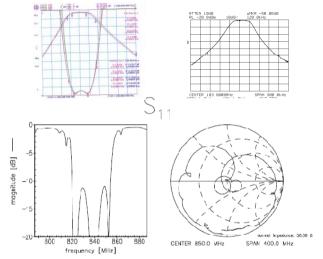


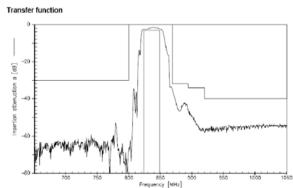

DESARROLLO EN RF... Funciones Amplificador de Bajo Ruido

- Características: adaptación, ganancia, figura de ruido, IP3, linealidad ...
 - Calculo de estabilidad
- Analizador de redes, medidor de ruido, generadores RF




DESARROLLO EN RF...Funciones Filtro Paso Banda

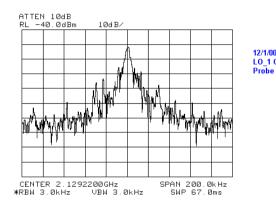

 Características: adaptación, return loss, respuesta dentro y fuera de banda, perdidas, selectividad

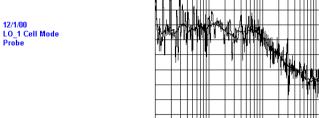


Analizador de redes vectoriales.

Inadecuada Calibración

Temperatura y
Propiedades Termofisicas


Tempo y Frequencia



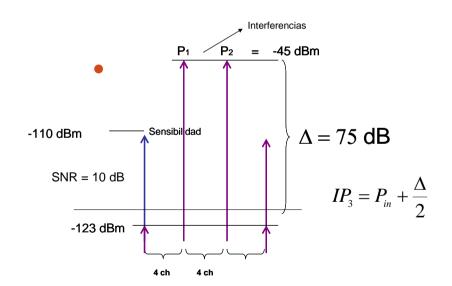
CENTRO NACIONAL DE METROLOGÍA, CENAM,
DERECHOS RESERVADOS 2009

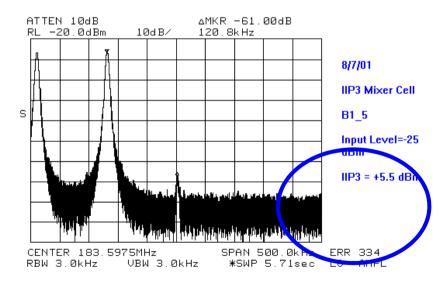
DESARROLLO EN RF...Funciones Osciladores

- Características: pureza espectral, estabilidad, ruido de fase, spurs
- Analizador de espectros, medidor de potencia,

12/1/00 Phase Noise LO_1 Cell BER Mode W/probe

Requerimientos del Oscilador	IS-136	GSM	W-CDMA
Channel BW (Hz)	3.00E+04	2.00E+05	5.00E+07
Phase noise (dBc/Hz) at Adj	-74.18317	-79.88708	-103.761
Phase noise (dBc/Hz) at Alt	-102.5869	-104.0497	-103.7562

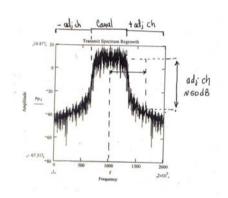

SPOT FRQ =

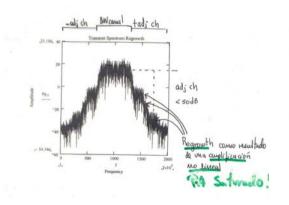

FREQUENCY OFFSET 2.129 GHz CARRIER

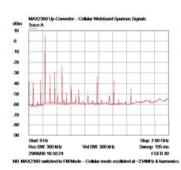
= 90.0 kHz -87.00 dBC/Hz

DESARROLLO EN RF... Funciones Convertidor de Frecuencia

- Características: ganancia de conversión, adaptación, rechazo LO-IF, RF-IF, IP3, ...
- VNA, analizador de espectros, medidor de potencia

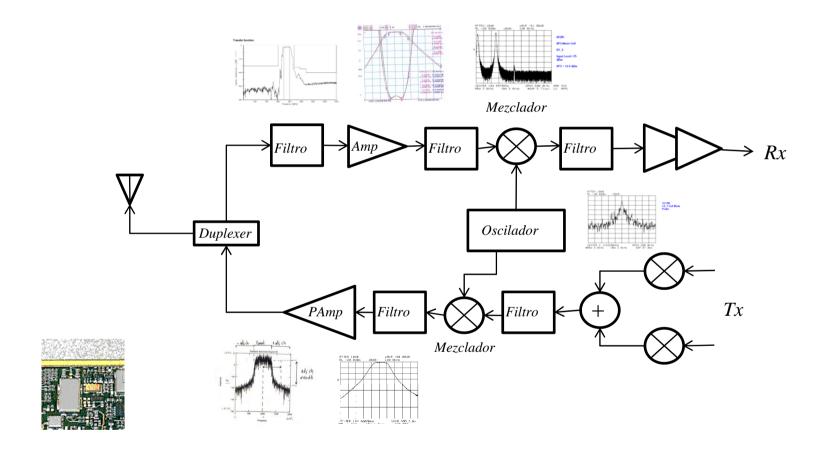





DESARROLLO EN RF... Funciones Amplificador de Potencia

 Características: P1 dB, IP3, potencia de salida, ganancia, linealidad en banda, distorsión de la señal modulada, spurs fuera de banda, mascarilla

 Analizador de espectros, generador de señales moduladas, medidor de potencia,

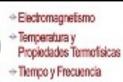


DESARROLLO EN RF... Funciones Integradas en la Arquitectura RF

FUNCIONALIDAD DE SISTEMAS RF

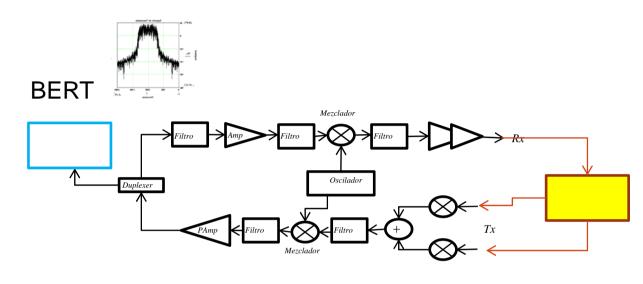
Pruebas de Funcionamiento IS-55A							
Especificacion	Valor	Especificacion	Valor				
Recepción		Transmisión					
Sensitividad (dBm)	-116	Estabilidad de frecuencia	+/- 2.5 PPM				
Selectividad de canal adjacente (dB)	16	Potencia RF	+2/-4 dBm				
Selectividad del canal alterno (dB)	60	EVM	12.5%				
Intermodulación (dB)	65	Limite de desviación de modulación	12 KHz				
BER	3% @ -103 dBm	Limitacion de emisiones					

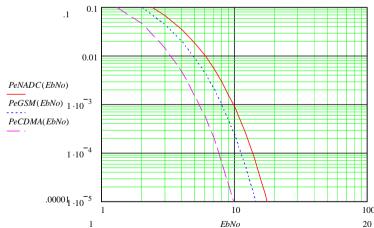
FUNCIONALIDAD SISTEMA RX...Sensibilidad


- Capacidad para detectar señales de potencia muy pequeñas $P_{\min} = KTBF \cdot SNR_{\min}$
- La sensibilidad depende de:
 - Ancho de banda del canal
 - Figura de ruido del receptor
 - Mínima relación SNR para un BER en acuerdo al tipo de modulación

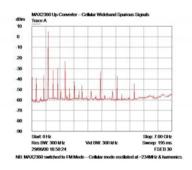
$$SNR_{\min} = \left(\frac{E_b}{N_o}\right) + 10\log\left(\frac{m \cdot R_{bit}}{B}\right)$$

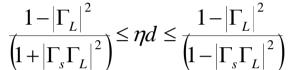
Caracteristica	IS-136	GSM	W-CDMA
BER	3%	2%	3%
			lor = -107,
Sensibilidad	-110	-102	DPCH_Ec = -117
Modulación	Pi/4 DQPSK	GMSK	
BW	30 KHz	200 KHz	3.84 MHz
Figura de ruido	8 dB	8 dB	8 dB

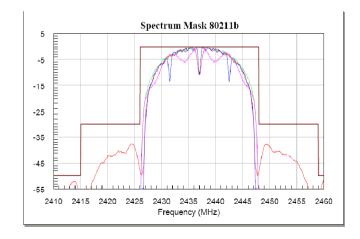




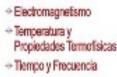
FUNCIONALIDAD SISTEMA RX...Sensibilidad







FUNCIONALIDAD SISTEMA TX...POTENCIA RF LIMITE DE EMISIONES


- Potencia de salida RF dentro de los limites
 - Incertidumbre de la medida, depende de las adaptaciones
- Emisiones:
 - Fuera de banda
 - Búsqueda de fuentes

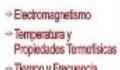
EMC Y EMI

- Estudio de normas según aplicación: Nacional o internacional
- Diseñar e integrar de acuerdo a recomendaciones para evitar afectaciones
- Desarrollo de procesos, técnicas de pruebas para verificar diseños
- Recintos especializados, cámaras anecoicas y semi-anecoicas
- EMC-EMI puede limitar la exportación

CONCLUSION

_

- Sistemas móviles = generado gran interés en RF
- Tecnología RF clave para desarrollos móviles e inalámbricos
- Retos y necesidades de un laboratorio RF
 - Instrumentación, normas, técnicas de medición, bancos de prueba, tecnologías propias a RF, proceso de diseño e integración de funciones Colaboración con industria, organismos de normalización
- Laboratorio de RF para la formación de recursos humanos
- Desarrolladores de aplicaciones móviles e inalámbricas deben tomar en cuenta EMC-EMI
 - puede limitar o complicar la exportación de productos electrónicos y eléctricos



GRACIAS

