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1. BACKGROUND 
 
A recent interlaboratory study that required 
individual analysts to estimate uncertainty intervals 
for their results revealed that some experienced 
chemical analysts have difficulty with measurement 
uncertainty calculations. Several NIST analysts used 
somewhat similar internal standard chromatography 
measurement processes to quantify one or more 
measurands in the study material, a complex lipid-
rich powder intended for use as a human nutritional 
supplement.  These analysts successfully developed 
their own purpose-built “spreadsheet” tools to 
estimate measurand quantities from their 
experimental data.  However, since these analysts 
routinely obtain expert statistical assistance when 
estimating measurement uncertainties, they did not 
themselves have the expertise for estimating 
uncertainty intervals for their quantity estimates. 
 
The measurement equations underlying the 
spreadsheet calculations used for determination of 
the concentration of each measurand were 
identified.  While differing in detail, all could be 
expressed as the product of a series of independent 
terms. A software tool appropriate to this form of 
measurement equation was developed to assist the 
analysts. To help validate the assumptions and 
calculations implemented in the measurement 

evaluation tool, the following model problem was 
constructed and posed to a number of chemical and 
statistical analysts with interest and expertise in the 
evaluation of measurement uncertainty. 
 
The data that inform the problem are derived from 
one of the measurement systems used in the 
interlaboratory study. 
 
2. MODEL PROBLEM 
 
What is the 95% expanded uncertainty interval for 
the result of the measurement equation 
 

Result = A x B x C 
 
given the following: 
 

Data for A: Six Independent Sets of Duplicate 
Measurements 

 
Set Ai1  Ai2 
A1 2.476  2.540 
A2 2.423  2.524 
A3 2.334  2.422 
A4 2.425  2.378 
A5 2.444  2.498 
A6 2.422  2.466 
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Data for B: Four Independent Measurements 

 
Set  Bi 
B1  0.968 
B2  0.967 
B3  0.973 
B4  0.967 

 
C = 6.864 

 
For “Extra Credit”: What is the 95% expanded 
uncertainty for the result if you regard the A values 
as 12 independent measurements rather than 6 sets 
of duplicates? 
 
 
3. RESULTS 
 
Several participants in the validation study provided 
more than one set of results, using either different 
mathematical approaches or different assumptions 
regarding the nature of the data.  The results can be 
summarized (with caveats discussed below) as 
follows:  
 

Summary of Results 
 

    6 Duplicates  12 Independent 
Approach  k  #  R  U(R)  #  R U(R)
PoU  2  3  16.26  0.27  5  16.26 0.23
PoU  ts  4  16.26  0.35  5  16.26 0.25
MC  -  2  16.26  0.43  2  16.26 0.30
 
PoU Propagation of uncertainty 
MC Monte Carlo 
k Coverage factor 
ts Student’s t 
# Number of results using same approach 
R Result 
U(R) Expanded uncertainty of the result 
 
 
Caveats 
 
It is somewhat embarrassing, but more than one of 
us either made minor data transcription or 
spreadsheet programming errors somewhere along 
the trail from initial to final result. The above 
Summary is of the results after these errors were 
corrected.  Most of the errors can be attributed to 
each of us building our own single-use models, 
either spreadsheets or scripts, to analyze the model 
data (which itself argues for the development and 
use of appropriate, fit-for-purpose, and validated 

software tools for measurement uncertainty 
estimation). 
 
In addition to evaluating the expanded uncertainty 
interval for the result of the measurement equation 
under the assumption that all of the A data come 
from a single measurement process, some of us 
also addressed: 1) what is the expanded uncertainty 
of the population of results that could be generated 
by this system? or 2) what is the expanded 
uncertainty assuming that each of the six sets of A 
duplicates came from different, independent 
measurement processes? While these are 
defensible interpretations of the problem as stated, 
these results are not included in the above Table. 
 
4. PROPAGATION OF UNCERTAINTY 
 
Most results were derived using the propagation of 
uncertainty (PoU) approach recommended in the 
Guide to the Expression of Uncertainty in 
Measurement (GUM) [1].  For the product of a series 
of quantities such as Result = A × B × C, the PoU 
model for the combined uncertainty is 
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where u(A), u(B), and u(C) are the standard 
uncertainties for the quantities A, B, and C. 
 
 
Standard Uncertainties 
 
For the model problem, all of us assumed that the 
standard uncertainty for the constant C, u(C), is zero 
and that the expected value for B is best estimated 
as the simple mean of the four values, B , with the 
standard deviation of the mean, ( )Bu , as its 
standard uncertainty:  
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The evaluation of the A data was less uniform. The 
main part of the model problem specifies that there 
are six independent sets of duplicate results but it 
does not specify the degree of dependence 
between the duplicates. Following a formal or 
informal analysis of variance, several of us 
concluded that these data are best considered to be 
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12 independent values.  The expected value and its 
standard uncertainty for A are again the simple 
mean and the standard deviation of the mean, A  
and ( )Au : 
 

( ) ( )
12

11
;12

12

1

212

1
∑∑
==

−
==

i

i

i
i

AAAuAA  

 
 
Under this assumption, the main and “extra credit” 
parts of the model problem are identical. 
 
The rest of us chose to estimate A  and ( )Au  using 
a within- and between-sample variance components 
model [2]. This model was evaluated using both 
purpose-built and commercial single-factor analysis 
of variance software; the two approaches yielded 
identical results. 
 
Since the two replicate measurements are given for 
all six samples, the expected value is the same A  
as above. The within-sample standard deviation, 
swithin, for the data can be estimated by pooling the 
standard deviation estimates for the six sets of 
duplicates 
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The among-sample standard deviation, samong, can 
be estimated from the standard deviation of the 
sample averages corrected for the within-sample 
variance that “leaks through” the sample averages 
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where “max(x,y)” is the function “take the maximum 
of the values x and y” and is used to ensure that 
samong is non-negative.  The standard uncertainty for 
the expected value, ( )Au , is then calculated as the 

combination of the two variances divided by their 
respective degrees of freedom 
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Combining the Standard Uncertainties 
 
Most of the reported PoU combined uncertainties, 
uc(Result), were evaluated from the standard 
uncertainties using the explicit GUM model given at 
the top of this section.  However, two of us used 
Kragten-style numeric approximations [3],[4].  To 
two significant digits, the values from the two 
approaches are equivalent.  Comparison of the 
results from the two approaches helps to validate 
both. 
 
Expanded Uncertainty 
 
The expanded uncertainty for the result, U(Result), 
is the product of the combined uncertainty and a 
coverage factor, k: 
 

( ) ( )ResultResult cukU ×=  
 
where k is chosen such that the interval 
Result ± U(Result) is expected to enclose a “true 
value” of the measurand with some specified level of 
confidence. 
 
Roughly half of the reported PoU U(Result) values 
used the conventional k = 2 expansion factor with 
the remainder defining k from the two-tailed 
Student’s t distribution, ts(95% confidence, number 
of degrees of freedom).  The number of effective 
degrees of freedom, νeff(Result), was calculated 
using the Welch-Satterthwaite approximation [5] 
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where ( )Beffν  is the number of effective degrees of 
freedom for B  (and is the number of independent 
measurements minus the number of estimated 
parameters; here: 4 – 1 = 3) and ( )Aeffν  is degrees 
of freedom for A  (and is 12 – 1 = 11 when 
assuming that there are 12 independent 
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measurements.  When assuming that there are six 
independent sets of duplicates, ( )Aeffν  was similarly 
estimated from the swithin and samong and their 
degrees of freedom (and rounds down to 5). 
 
 
5. MONTE CARLO 
 
While computationally intensive Monte Carlo (MC) 
methods are well established in other contexts [6], 
their use in the estimation of measurement 
uncertainties is a relatively new development [7].  
The common thread among the diverse MC 
methods is that they directly estimate the distribution 
of results for a given set of assumptions and input 
values rather than the point-estimates provided by 
the PoU. Empirical Bayesian analysis is a MC-based 
technique where data are used to inform explicitly 
defined assumptions about the underlying sampling 
distribution(s) of the data and, after tossing about 
many random numbers, provide the expected 
posterior distribution as its result. 
 
Two of us used the WinBUGS [8] freeware system 
to evaluate U(Result) for the Result = A ×B × C 
measurement equation, using the distributions 

( )2,Normal~ BiB σβ  where β is the true value of B 

and 2
Bσ  is the true variance of the Bi measurements; 

( )2,Normal~ AiA σα  where α is the true value of A 

and 2
Aσ  is the true variance of the Ai measurements 

when the Ai are considered as 12 independent 
values; and ( )2

among,Normal~ σαiA , 

( )2
within,Normal~ σiij AA  when they are considered as 

six independent sets of duplicates. The symbol “~” 
signifies “is distributed as”. 
When there is prior information about what the 
various distributional parameters should be, 
Bayesian evaluation can update the priors with new 
data to provide new and improved estimates for the 
parameters.  For the model problem, only the 
general shape of the variances is known: 2

Bσ , 2
Aσ , 

2
withinσ , and 2

amongσ  are all non-negative.  Therefore, 
uninformative priors are used for all parameters, 
such as: very broad normal distributions centered on 
zero for the location parameters (β, α, and Ai) and 
uniform distributions from 0 to some value much 
larger than the largest plausible value for the 
variances. 
Since the result of MC estimation is a distribution, 
the “expanded uncertainty” for any level of 

confidence is directly available from the distribution 
itself and does not require further computation. 
 
 
6. ASSUMPTIONS THAT LEAD TO 
DIFFERENCE 
 
While the 95% expanded uncertainty estimates for 
the data of the model problem are “roughly 
equivalent”, they do range from 0.23 to 0.43. The 
smallest estimate comes from traditional PoU 
analysis assuming that there are 12 independent 
measurements of the A quantity and that the 
coverage factor k = 2 expands the combined 
uncertainty to an interval that covers the true value 
with an approximately 95% level of confidence.  The 
largest estimate comes from the Bayesian MC 
analysis of the A data as six sets of duplicates, using 
very uninformative distributional priors. The three 
assumptions that lead to differences in the results 
for the model problem are thus: 1) the independence 
of replicated data, 2) the nature of the distributions 
from which the data were sampled, and 3) the 
coverage factor in PoU analysis. While explicit in the 
calculations for each result, these assumptions are 
not necessarily accessible to those who may wish to 
actually make use of the Result ±U(Result) values. 
 
Given the (intentional) absence of information on the 
nature of the duplicate measurements, regarding all 
12 of the A data as independent or as six 
independent sets of potentially dependent duplicates 
are both quite defensible assumptions. For the 
measurement system from which the model data 
were derived, the “12 independent value” model may 
be most appropriate since the measurements 
represent single (independent) injections of two 
independently prepared aliquots of six nominally 
identical units of the study material.  However, the “6 
sets of dependent duplicates” model would be 
appropriate if the values represented duplicate 
injections from six aliquots.  In real life, the choice of 
models is informed by the experimental procedure 
and should be made by those familiar with the 
experiment. However, the nature of this choice is 
generally no more (if no less) relevant to the 
consumers of measurement results than are other 
experimental details. 
 
Given that the use of MC techniques is relatively 
novel in chemical metrology and that their results 
can be strongly influenced by fairly subtle 
differences in the choice of the uninformative priors, 
measurement consumers may well need to be 
broadly aware that MC techniques were used. 
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The k = ts coverage factor reduces to the 
conventional k = 2 when the number of degrees of 
freedom is large.  For the model problem, ts(95%, 
νeff=11) is about 2.20 and accounts for the 10% 
difference in PoU results when the 12 A values are 
regarded as fully independent.  When the A values 
are considered as six independent sets of 
duplicates, ts(95%, νeff =5) is about 2.57 and 
accounts for the nearly 30% difference in the PoU 
results.  Given that the MC 95% uncertainty intervals 
are 15 % to 20 % wider than the k = ts results, the 
conventional k = 2 does not appear to here provide 
a credible 95 % level of confidence coverage 
interval.  Why then is the k = 2 factor used? 
 
One obvious answer is that calculation of the 
effective number of degrees of freedom can be 
difficult for even simple measurement equations.  
There is also debate as to the appropriateness of 
the Welch-Satterthwaite estimation procedure 
[9],[10],[11]. However, the use of k = 2 has in some 
circles become institutionalized: 
 

“To be consistent with current 
international practice, the value of k to 
be used at NIST for calculating U is, 
by convention, k = 2. Values of k other 
than 2 are only to be used for specific 
applications.” [12] 

 
 
7. MAKING THE “HIDDEN” ASSUMPTIONS 
LESS SO 
 
The signatories to the International Committee for 
Weights and Measures (CIPM) Mutual Recognition 
Arrangement (MRA) bound themselves in 1999 to 
the transparent reporting of measurement 
uncertainty 
 

“Uncertainties are evaluated at a level 
of one standard uncertainty and 
information must be given on the 
number of effective degrees of 
freedom, required for a proper 
estimate of the level of confidence.” 
[13] 

 
and to the use of expanded uncertainty intervals 
having 95 % levels of confidence 
 

“The degree of equivalence of each 
national measurement standard is 
expressed quantitatively by two terms: 

its deviation from the key comparison 
reference value and the uncertainty of 
this deviation (at a 95 % level of 
confidence).” [14] 

 
The use of the conventional k = 2 coverage factor 
will not give expanded uncertainty estimates 
providing coverage at the 95 % level of confidence 
for relatively small numbers of effective degrees of 
freedom. Without a separate and explicit statement 
of the effective number of degrees of freedom 
associated with the combined uncertainty, k = 2 
does not enable estimation of the true level of 
confidence. Thus, for PoU methods, reporting an 
expanded uncertainty is at best redundant since 
knowledge of both uc and νeff are required for proper 
interpretation. However, MC methods directly 
estimate uncertainty intervals (for all desired levels 
of confidence) without explicitly estimating either uc 
or νeff. 
 
The consumer of measurement results thus needs 
more information than is provided by “Result ± 
U(Result). For PoU methods, the “hidden 
assumptions” could made more visible by use of the 
alternate but GUM-defined symbol Up: 
 

“Expanded uncertainty of output 
estimate y that defines an interval Y = 
y ±Up having a high, specified level of 
confidence p, equal to coverage factor 
kp times the combined standard 
uncertainty uc(y) of y: Up = kpuc(y)” [1]. 
 

An uncertainty estimate providing approximately a 
95 % level of confidence would thus be designated: 
U95.  This could be extended to encompass use of 
the conventional coverage factor: Uk=2. When 
accompanied by an explicit statement of the 
associated effective degrees of freedom, the 
approximate statistical level of confidence provide by 
the estimate can be evaluated and/or the estimate 
can be adjusted to provide a desired level of 
confidence. When there is no statement of the 
effective degrees of freedom, use of Uk=2 would 
serve to warn the user that the estimate may not 
provide the nominal 95 % level of confidence. When 
uncertainty is estimated using some MC method, the 
symbol could be further extended, perhaps to: UMCp. 
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