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Abstract:  The conclusions from international key comparison (KC) experiments constitute an important basis 
for validating the mutual recognition of measurement capabilities between the national metrology institutes 
(NMIs).  Conventional χ2 (chi squared) methods for data analysis have been recommended in a move to 
promote uniformity in the conclusions drawn from KC results.  Extended χ2 methods can address the 
complexities of degrees of freedom or novel algorithms for using peer results to select a reference value. In 
many situations, the utility of a KC reference value can be overstated. By focusing instead on pair differences, 
unmediated consistency analysis offers a better method for testing the statistical consistency of a KC data set. 
This paper discusses extended χ2 methods, using the mean-square of the normalized differences between 
pairs of measurements, or pairs of “consensus invariants” derived from the measurements. The underlying 
simplicity of comparing real measurements to each other (avoiding any equivocal approximation to “the right 
answer”) can reduce the perceived complexity of a KC experiment, particularly for KCs with multiple 
measurands that can all be incorporated into the χ2 average. An example from CCL.SIM-K1 is discussed. 
 
 
1. INTRODUCTION 
 
One of the principal goals of key comparisons 
undertaken in support of the CIPM mutual 
recognition arrangement (MRA) [1] is to demonstrate 
inter-laboratory consistency in the principal 
techniques used in various major metrology areas. 
Typically, an artifact is circulated for measurement, 
and each of the N NMIs participating in the key 
comparison submits the value of their measurement 
result and an associated uncertainty. For these KCs, 
chi-squared statistics [2, 3] are a widely appreciated 
way to measure and communicate the consistency 
of the N results, by comparing the dispersion of the 
N reported values with the dispersion expected from 
the N claimed uncertainties. The implicit metrology 
conjecture is simple: the measurement values 
reported by the NMIs are expected to agree within 
the associated uncertainties they reported.  
 
Dimensional metrology provides concrete examples 
for how complexity in a KC can be managed. In 
dimensional metrology, the principal technique for 
measuring gauge block length with direct traceability 
to the SI definition of the metre is optical 
interferometry.  This case illustrates clearly the basic 
consistency test using a chi-squared methodology 
for analysis of a scalar measurand. 
  
In dimensional metrology there are also a variety of 
more complex comparisons that include multiple 
measurements taken simultaneously. They make 
use of more sophisticated artifacts such as linear 

scales, or ball plates for co-ordinate metrology. In 
some cases, the multiple measurements may be 
presented explicitly as a vector with an intuitive 
physical meaning (the ball plate, for example). In 
other cases the multiple measurements may be 
presented as a column in a table that might also be 
treated as a vector quantity, but more as a matter of 
notational convenience than to evoke an intuitively 
appealing physical appreciation of the measurands. 
 
In dimensional metrology, it is also common practice 
to circulate multiple artifacts. This adds richness to 
the experiment, but also presents new difficulties in 
finding and aggregating a statistic that describes the 
simple consistency averaged over the entire group 
of artifacts. 
 
In international comparison experiments, perceived 
complexity can increase dramatically as the amount 
of data increases. With conventional techniques, 
one must find a consensus model for a more 
intricate “right answer”; a consensus fitting protocol 
and perhaps even agreement about which 
measurements are to be regarded as “outliers” to be 
excluded from the fitting. As the experiment 
becomes more intricate, it becomes more 
challenging to create the “consensus right answer” 
as is traditionally required to begin a consistency 
analysis. 
 
In contrast, agreement about essentially simple 
“consensus invariants” can be much easier to 
obtain. For example, two-dimensional coordinates of 
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the balls of a ball plate, measured by any laboratory, 
could be used to calculate the distance between a 
specified pair of balls. All laboratories would be 
expected to report the same scalar value for this 
distance, within the dispersion of the reported 
combined uncertainty. In a typical ball plate, there 
would be an enormous number of distances to 
consider, and the random variables describing the 
distances would not all be independent of one 
another. All the resulting increase in arithmetical 
complexity can be dealt with by computers, to 
quantitatively describe the conceptual simplicity of 
the scalar “distance”, averaged over all balls. 
 
This paper discusses how the apparent complexity 
of comparisons can be addressed using a variant on 
traditional chi-squared testing. It employs the root-
mean-square of the normalized differences between 
pairs of measurements, or consensus-invariant 
scalars. It avoids any necessity for a “consensus 
right-answer”. It can create a conceptually simple 
description of average consistency, even in the 
richest of comparisons, at the expense of 
arithmetical complexity that is easily handled 
automatically by computers. 
 
2. COMPARISON CONSISTENCY TESTING 
 
The MRA process for reporting key comparisons is 
usually in terms of a key comparison reference value 
(KCRV), a good but not necessarily the best 
representation of the SI value. The KCRV is usually 
derived from the results of the participating NMIs 
considered as peers. When the KCRV is taken to be 
the weighted mean of the N values, classical chi-
squared testing can be rigorous.  
 
In cases where some other method (such as the 
simple arithmetic mean or the median) is chosen to 
represent the KCRV of the peer results, chi-squared 
testing must be extended to assess consistency 
[4,6].    
 
Where non-Gaussian distributions are reported, 
including the Student distribution implied by the use 
of finite degrees of freedom, chi-squared testing 
must be extended further [4,6] to address the 
specific forms of the claimed distributions.  
 
Chi-squared statistics have been extended to cover 
both of these situations, and can be used to test 
consistency against any choice of KCRV, even when 
the distributions associated with the reported 
uncertainties are not Gaussian. Such testing 
rigorously expresses the probability of a key 

comparison’s chi-squared statistic being exceeded 
by the randomness in the resampled chi-squared 
expected from the claimed uncertainties. For some 
key comparisons there has been a significant delay 
in agreeing on a final report. Accepting extended 
chi-squared statistical testing should eliminate this 
delay when there is no compelling evidence that 
anomalies exist, so that neither additional causes of 
dispersion (outliers, biases or uncertainty 
components) nor other KCRV candidates need to be 
considered for the final report. 
 
3. CLASSICAL CHI-SQUARED ANALYSIS 
 
The classical chi-squared approach starts with the 
inverse variance weighted mean as the locator of 
central tendency used as the KCRV. Under the 
assumptions of a stable circulating artifact, and 
independent Gaussian uncertainty distributions, this 
weighted mean is suggested as the first choice for 
the KCRV [3]. For variances away from the weighted 
mean, the classical chi-squared statistic expressed 
as a reduced chi-squared with (N − 1) degrees of 
freedom (note that its value is expected to tend 
towards 1 as N increases), is 
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If the N results are drawn from N independent 
Gaussian distributions, with the same unknown 
mean, and with standard deviations equal to the 
reported standard uncertainties, then the number 

2
ccy χ=  computed for the particular key comparison 

data, {xi, ui}, is expected to be a sample of a positive 
random variable y distributed as an exact reduced 
chi-squared with N−1 degrees of freedom, with a 
probability density function (PDF) that is proportional 
to y(N−3)/2 exp(− y (N−1)/2).  
 
Non-Gaussian distributions and inter-laboratory 
correlations can lead to departures from this exact 
chi-squared form [4,6], but the ‘chi-squared-like’ 
distributions for any given key comparison are 
readily evaluated by Monte Carlo simulation of the 
stated uncertainties. Chi-squared testing uses the 
fraction of this PDF that is greater than yc, P(y > yc).  
 
For any comparison, the classical chi-squared χc

2 
has a particular value yc and the probability P(y > yc) 
can be obtained from the chi-squared tables with the 
appropriate degrees of freedom, from packaged 
functions, from numerically integrating the analytic 
form of the PDF given above, or from a Monte Carlo 
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simulation for this particular comparison. P(y > yc) 
gives the probability that yc would be exceeded by 
chance, again given that all N results are drawn from 
N independent Gaussian distributions, with the same 
unknown mean and with standard deviations equal 
to the claimed standard uncertainties. This is the 
classical null hypothesis test for a group of peer 
results and is proposed [3] as a necessary test for 
not rejecting the weighted mean as the KCRV. The 
cumbersome language is an unfortunate byproduct 
of the fact that experimentally, evidence can only be 
rigorously compelling for rejection.  The proposed 
threshold [3] is that if the theoretical chance of 
exceeding yc is less than 5%, then the comparison 
should be regarded as inconsistent with agreement 
to the weighted-mean KCRV within the claimed 
uncertainties. 
 
This means that one KC in 20 would be expected to 
be unjustly rejected. Even this high level of rejection 
does not in any way create a high level of 
confidence that the KCRV model is correct, and 
actions based on acceptance of the KCRV model 
need to be viewed in this light.  
 
With appropriate Monte Carlo simulation, the same 
type of test can also be used to examine other 
values of central tendency that might be used to 
represent the KCRV. For example, as a KCRV 
candidate, it is possible to consider the median [4,6], 
for which null hypothesis testing using chi-squared 
statistics is traditionally regarded as too difficult. 
 
 

Table 1:  Key Comparison data set from CCL.SIM-
K1 short gauge block calibration by optical 
interferometry.  The data set includes the submitted 
measured value, standard uncertainty and degrees 
of freedom for the steel gauge block of nominal 8 
mm length. 
 

Table 2:  Values for weighted mean for Table 1, its 
associated uncertainty and P(y>yc) evaluated using 
conventional statistics (Gaussian distributions), and 
using Monte Carlo simulation to evaluate the 
probability for extended chi-squared statistics that 
incorporate the claimed degrees of freedom νS. 
 
Table 2 lists the values for the weighted mean 
(specifically, the weighted mean with weights 
proportional to the inverse of the square of the 
standard uncertainty), its associated uncertainty and 
the probability of the chi-squared statistic exceeding 
the experimental value yc by chance. It is calculated 
for the Gaussian approximation (see Figure 1) which 
corresponds to the conventional chi-squared test. 
The extended chi-squared-like probability, that takes 
account of the claimed degrees of freedom, was 
calculated by Monte Carlo simulation of the 
comparison-specific distributions (see Figure 2).   
 
The differences between Figures 1 and 2 initially 
appear to be rather subtle. They are the result of 
taking into consideration the tails of the Student 
distribution; a reflection of the larger uncertainty in 
the uncertainties stated by participants with low 
degrees of freedom.  Figure 2 takes into 
consideration the degrees of freedom submitted by 
each participant.  Despite the apparent subtlety, the 
probability of exceeding the experimental chi-
squared is substantially increased for the extended 
chi-squared testing as shown in Table 2.  This 
simple example illustrates the necessity and 
advantages of including the degrees of freedom, as 
claimed by the participants, when evaluating their 
consistency. The degrees of freedom may reflect a 
lab’s uncertainty in their uncertainty evaluation, and 
even here there is a rigorous basis for using the 
Student distributions in this way.  Monte Carlo 
resampling offers a rigorous statistical method to 
incorporate all GUM-compliant participant data in 
consistency and equivalence testing. 

 

Lab Name 
Lab 

Submitted 
Value /nm 

Lab 
Submitted 

u(k=1) 
/nm 

νS 

NRC 29 14 10 
CENAM 45 7 82 
INMETRO2 81 14 13 
INMETRO1 42 2 5 
INTI 40 11 78 
NIST 59 10 10000 
CEM 47 8 74 

 
Conventional  

χ2  
Extended  

χ2 

Weighted Mean 43.1 nm 43.1 nm 

Uncertainty 1.5 nm 1.5 nm 
Experimental χ2 = yc 1.975 1.975 

P(y>yc) 6.5 % 10.2 % 
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Fig. 1:  Resampled Lab Values' PDFs and pool for 
the 8 mm steel gauge block plotted as normal 
distributions. 

 

 

 

 

 

 

 

 

 

   

 

 

 

Fig. 2:  Resampled Lab Values' PDFs and pool for 
the 8 mm steel gauge block plotted as Student 
distributions, taking into consideration the reported 
degrees of freedom.  
 
The subtleties in the wings of claimed uncertainty 
distributions can change the interpretation, for a 
substantial range of possible experimental yc’s, (yc  
between 2.1 and 2.4 in this case) and avoid the 
problematic conclusion of “null hypothesis rejected”. 
Doing the analysis properly, to account for the 
subtleties, can “rescue” a comparison from 
unnecessary doubts and delays. 

 
4.      χ2 AVERAGING TO REMOVE COMPLEXITY 
 
Conceptually, consensus invariants of a comparison 
can be much simpler to describe (“the labs are 
expected to obtain the same results for…”) than a 
complete fitting model for an artifact that embeds 
this expectation of invariance. To test whether the 
labs did get the same results, within the range to be 
expected from their claimed uncertainties, can be 
very simple. To do this we can compare a particular 
scalar consensus invariant, obtained by pairs of 
labs, normalizing the difference to the expected 
combined standard uncertainty in the difference, and 
doing a mean-square average 
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This all-pairs-difference chi-squared [2,5,6] can be 
further averaged, for example over all the consensus 
invariants of a comparison. Note that it is also the 
mean-square aggregate of the simplest normalized 
error or En  [7]. 
 
The chi-squared-like statistic of Equation 2 can be 
evaluated by Monte Carlo simulation [5] in much the 
same way as was illustrated above for CCL.SIM-K1. 
The essence is to simulate the χ2

APD by Monte Carlo 
simulation of the claimed uncertainties, but 
constrained by the null hypothesis of perfect 
agreement for each consensus invariant. In this way, 
not only the degrees of freedom as claimed by each 
participant, but also the overall “degrees of freedom” 
for the aggregated chi-squared-like statistic can be 
fully accounted for – including all consequences of 
the fact that the consensus invariants are not 
generally statistically independent. No “counting” of 
degrees of freedom is necessary, since all of the 
relevant details are handled by the Monte Carlo 
simulation. 
 
Building a Monte Carlo model of the claimed 
uncertainty budgets, as applied to the consensus 
invariants, can be very easy but can also be 
challenging when there are approximations in the 
claimed uncertainty budgets that need to be undone 
to obtain consistency over the whole range of the 
consensus invariants.  
 
Table 3 shows the KCRV-free analysis of 
consistency using the statistic of Equation 2. The 
deficiencies of the KCRV-mediated conventional χ2 
test are evident: with Gaussian uncertainty 
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distributions this comparison should be deemed to 
have sufficiently compelling evidence to reject the 
null hypothesis of agreement of paired results. 
Where a pair of results are somewhat far from the 
KCRV, the KCRV-mediated conventional χ2 cannot 
reliably distinguish when the pair agrees well with 
each other and when the pair of results are 
equidistant from the KCRV but lie on opposite sides 
of the KCRV [5]. 
 
When the degrees of freedom claimed by the 
participants is properly accounted for, this 
comparison is “rescued” when the 5% rule [3] is 
applied to the statistic of Equation 2.  
   
 

 Gaussian  Extended, 
Student 

Experimental χ2
APD = yc  2.181 2.181 

P(y>yc) 4.9 % 8.1 % 
 
Table 3:  Values for χ2

APD for Table 1, and P(y>yc) 
evaluated by Monte Carlo simulation for Gaussian 
distributions, and Student uncertainty distributions 
that incorporate the claimed degrees of freedom νS. 
 
 This analysis is independent of any choice of KCRV 
or fitting model. It addresses the essential metrology 
of a comparison: whether results, that are supposed 
to be the same, are the same within the variation 
expected from the claimed uncertainties. The 
metrological prediction that they should be the same 
can be tested, by the classical scientific method of 
prediction and experimental validation, in very broad 
aggregates to elevate the metrology in question to 
the level of a true measurement science. 
 
5. CONCLUSIONS 
 
Simple answers to the question of agreement 
between NMIs are best addressed by exploiting all 
of the richness of the measurements performed, and 
data collected, during the KC experiment.  This is 
the primary motivation for employing unmediated 
chi-squared-like testing for the evaluation of 
statistical consistency of a KC data set.  The 
evaluation and defense of uncertainty budgets 
remains an essential priority of the metrology 
community since conclusions regarding intra-
laboratory consistency depend on the description of 

the probability density function associated with the 
uncertainty claims.  For this reason, it is important to 
weigh the consequences of relying on low-
probability events (which produce the ‘tails’ of the 
distribution associated with the uncertainty budgets) 
for making decisions on who agrees with whom.  
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