Gas adsorption characterization of SWNT and other nanomaterials: beyond BET

Zygmunt J. Jakubek

Steacie Institute for Molecular Sciences National Research Council, Ottawa, Canada

ISO 9277

Determination of the specific surface area of solids by gas adsorption using the BET method.

» implemented in 1995

» applicable to:

*

- » disperse, nonporous or macroporous solids
- » mesoporous solids (pore size 2–50 nm)

SWNT isotherms – Ar at 77K

*

HiPCO NRC (laser-grown, open and closed)

» Brunauer, Emmett, Teller (1938)

» assumptions:

- » multiple noninteracting layers
- » second and higher layers do not interact with adsorber
- » Langmuir theory applies

$$V = f\left(\frac{p}{p_0}\right) \implies \frac{1}{V\left[\frac{p_0}{p} - 1\right]} = \alpha \frac{p_0}{p} + \beta$$

gas adsorption on SWNT

- reference sample close-ended SWNT
 - as-grown material

*

outgassing for 48 hrs at 295 K to <10⁻⁶ torr

processed sample – open-ended SWNT

- outgassing for 12 hrs at 295 K and for 30 minutes at 435 K
- heating in dry air at 470 K for 2 hrs
- outgassing at 385 K for 12 hrs
- between series of isotherm measurements: ougassing for 4 hrs at 475 K

isotherms acquisition

- ASAP 2010 porosimeter (Micromeritics)
- 1 and 0.1 torr capacitance manometers (Baratron)
- liquid Ar and liquid N₂ temperature stabilization
- 0.08 0.5 cm³/g STP dosing (high resolution, p < 3 mtorr)
- several full and partial Ar and Kr isotherms for each sample

SWNT bundles - adsorption sites

SIMS nanotubes

*

» typical bundles (~90 NT)
» SWNT diameter ~1.34(10) nm
» no open NT
» high purity >75% SWNT

TEM image: very large bundle (169 nanotubes and 42 grooves)

- external surface and grooves » freely accessible
- interstitial channel » possibly He, H₂
- interior of nanotubes » molecule size limited
- voids, cavities, imperfections » freely accessible mesopores

adsorption simulation – external sites

*

Ar adsorption on SWNT at 87 K

*

Talapatra & Migone PRL 87, 206106 (2001)

isosteric heat of adsorption

(a) this work – high coverage (77-87 K)

*

(b) Talapatra and Migone Phys. Rev. Lett. 87, 206106 (2001) – high coverage (60-87 K)

(c) Wilson et al. J. Low Temp. Phys. 126, 403 (2002) – low coverage (~90 K)

(d) Talapatra et al. J. Nanoscience Nanotech. 2, 467 (2002) – low coverage (110-160 K)

adsorption simulation – internal sites

*

step predicted at 77 K (p/p₀)_

7×10 ⁻⁸	(1.02 nm SWNT)
1.5×10 ⁻⁵	(4.78 nm DWNT)

step observed (p/p₀) (1.34 nm SWNT)

 $\begin{array}{c} (1.54 \text{ Im} \text{ SWRT}) \\ 6.8 \times 10^{-7} & (\text{at 77 K}) \\ 2.5 \times 10^{-7} & (\text{at 87 K}) \end{array}$

Maddox and Gubbins Langmuir 11, 3988 (1995)

Kr adsorption and desorption at 77 K

several endohedral and exohedral phases

- first layer groove
- first monolayer

*

- second layer groove
- second monolayer

Kr adsorption inside SWNT at 77 K

*

Steele & Bojan Adv. Colloid Interface Sci. 76-77, 153 (1998)

- two branches real effect
- condensation/evaporation hysteresis
- first-order phase transition
- improved experiment + modeling

SWNT bundles – adsorption sites

"corn on the cob"

Ar phases on bundles of openended SWNT - artist rendition

carbon atoms

*

- internal monolayer
- axial adsorbate
- one-channel phase
- three-channel phase
 external monolayer
 gas phase Ar atoms

Raman spectroscopy of SWNT

*

quality variation of SWNT materials

*

related standards

*

- » Particle size analysis -Photon correlation spectroscopy (ISO 13321)
- » Particle size analysis Laser diffraction methods -Part 1: General principles (ISO 13320-1)
- » Determination of particle size distribution Singleparticle light interaction methods - Part 1: Light interaction considerations (ISO 13323-1)
- » Determination of particle size distribution Small angle X-ray scattering method (ISO/TS13762)

SWNT standards

» TEM	(TS10797)
» SEM and EDX Analysis	(TS10798)
» UV-Vis-NIR absorption	
spectroscopy	(TS10868)
» NIR-PL spectroscopy	(TS10867)
» EGA-GCMS	(TS11251)
» TGA	(TS11308)
» Raman spectroscopy	(TS10812)

single walled carbon nanotubes

» seamless tube of rolled graphene

» 1-5 nm in diameter

*

» 0.1-1 µm in length

» endless bundles (10-200 NT)

» metallic or semiconducting (~1 eV)

» high electrical (ballistic) conductivity

» 10⁹ - 10¹³ A/cm²

» high thermal conductivity

» 2× diamond

» strongest material known

» Young modulus: ~10× steel

» tensile strength: ~100× steel

» high chemical stability

