

Diffraction-Grids Calibration at CENAM

Miguel Viliesid Alonso Jefe de División Metrología Dimensional CENAM

February 12, 2009

Calibration

• Operation that, under specified conditions, in a first step, establishes the relationship between the quantity values with measurement uncertainties provided by measurement standards and corresponding indications with associated measurement uncertainties and, in a second step, uses this information to establish a relation for obtaining a measurement result from an indication.

In other words...

• Calibration (of an instrument or standard).Comparison of the measurement results (of an instrument or a standard) to those of a hierarchically superior instrument or standard. In this operation a calibration uncertainty has to be established (considering the uncertainty of the reference).

Instrument under calibration

Superior standard

$$L (+ Corr) \pm U_{Cal}$$

$$U_{cal} > U_{GB}$$

Traceability

 Property of a measurement result whereby the result may be related to a reference through a documented unbroken chain of calibrations, each contributing to the measurement uncertainty.

Dissemination of the Unit of Length through an Unbroken Chain of Calibrations

Traceability and dissemination of the unit of length in some Nano-applications

Definition of the length unit

 The metre is the length of the path travelled by light in vacuum during a time interval of 1/299 792 458 of a second.

$$\lambda = \frac{c}{f}$$

• Realization at CENAM: He-Ne lodinestabilized laser at ~633 nm.

15 aniversario

Measurement uncertainty

• Non-negative parameter characterizing the dispersion of the quantity values being attributed to a measurand, based on the information used.

$$x \pm U_x$$

In other words...

• It is an interval (*U_x*) around the best estimate of a measurand (*x*) where the true value of the measurand should lie with a specified confidence level.

Diffractometer principle

Example of a commercial grating: 2,160 lines/mm

Diffractometer principle

$$p = \frac{m\lambda}{2\sin\theta}$$

m, diffraction order (m = 1, 2, 3...); λ , Light wavelength θ , measured angle

Some considerations...

• Calibration of a bundle of lines (between 2 000 and 15 000 depending on the grating and the laser beam spot size) whereas the grating is used to measure between individual lines.

Some considerations...

• Smallest pitch that can be calibrated limited by half of the wavelength applied (318 nm red, 272 nm green).

$$p = \frac{\lambda}{2}$$

15 aniversario

And only one order of diffraction (m = 1) may be observed under this condition.

Some considerations...

 Number of diffraction orders that can be measured limited by the decreasing intensity of light with diffraction order (only the two first orders are usually measured).

Some considerations...

 Number of lines in the averaging spot is a function of the Littrow condition angle.

n₁ lines on spotSmaller angle

 n_2 lines on spot

n₃ lines on spotLarger angle

$$n_1 < n_2 < n_3$$

Uncertainty of measurement

Where:

$$\frac{\partial p}{\partial \lambda} = \frac{m}{2 \operatorname{sen} \theta}$$

$$\frac{\partial p}{\partial \theta} = -\frac{m\lambda \cos \theta}{2sen^2 \theta}$$

Uncertainty of measurement

40 μ m grating $\theta = 0.40^{\circ}$

Contrib.	Type of Unc.	Uncertainty Value	Sensitivity Value	Unc. Cont.	Variance	%
ì	Б	5,44 x 10⁻⁷ μm	71,6	1,51 x 10 ⁻⁵ μm	3.78 x 10 ⁻¹⁰ μm ²	0
θ	Α	10" (4,85 x 10 ⁻⁵)	5,57 x 10 ³ μm	2.70 x 10 ⁻¹ μm	7,29 x 10 ⁻² μm ²	100

 \Rightarrow $p = (39,91 \pm 0,54) \mu m$

$u^2 =$	7,29 x 10 ⁻² μm ²	10
u =	2,70 x 10 ⁻¹ μm	
U =	0,54 μm	

1,66 μ m grating θ = 9,65°

Contrib.	Type of Unc.	Uncertainty Value	Sensitivity Value	Unc. Cont.	Variance	%
7.	В	5,44 x 10 ⁻⁷ μm	2,98	1,62 x 10 ⁻⁶ μm	2,62 x 10 ⁻¹² μm ²	0
θ	Α	10" (4,85 x 10 ⁻⁵)	9,53 μm	4,62 x 10 ⁻⁴ μm	2,14 x 10 ⁻⁷ μm ²	100

 \Rightarrow p = (1,65016 ± 0,00092) μ m

$u^2 =$	2,14 x 10 ⁻⁷ μm ²	100
u =	4,62 x 10 ⁻⁴ μm	
U =	0,00094 μm	

Working prototype

Conclusions

- Diffraction gratings may be calibrated by a simple set-up of diffractometer.
- The light source frequency stability has negligible impact in the quality of the measurement. An un-stabilized laser may be used.
- The measurement of angle is almost the only source of uncertainty.
- Angle measurement with an uncertainty of 10" seems to be enough.
- Uncertainty is a function of angle and angles larger than 10° are desirable to keep uncertainty low. To be able to get adequate diffraction angles to have a set of different wavelengths available is recommended.
- It is also recommended to measure higher diffraction angles to get larger angles to measure as long as the intensity of the signal is enough.
- The present prototype and experiments will lead to the design of a compact low cost diffractometer to calibrate diffraction gratings. It is the continuation of this project.