

Steacie Institute for Molecular Sciences

High Resolution AFM

Oligomeric assemblies of native membrane proteins by AFM. (a) Topography (raw data) of sodium-driven rotors from FoF1-ATP synthases of Ilyobacter tartaricus. Averaged topographs of ion-driven rotors from FoF1-ATP synthases of (b) I. tartaricus, (c) spinach chloroplasts and (d) Spirulina platensis; (e) The raw data AFM image of a core complex surrounded by seven peripheral antenna (LH2) complexes to the structural model derived from it.

Scheuring S. and Sturgis J. (2005) Science 309, 484-487

Conductive Probe AFM

NRC Canada, University of Toronto, University of Bristol Li JK; Zou S; Rider D; Manners I; Walker GC *Adv. Mater.* 2008, *20*, 1989-1993. Wang YS, Zou S, Winnik MA, Manners I Chemistry Eur. J. 2008, in press.

Number of counts

Single modules of multi-domain adhesion proteins unfold in a largely two-state manner. The forced structure), which leads to rapid unfolding of the whole unfolding of each domain is initiated by the rupture of a specific structure element (most commonly secondary domain into a random coil chain. Exposing the protein to heat or chemical denaturants is unfolded conformation (red pathway). However, the exact pathway of mechanical unfolding or reaction the classical way of driving a protein out of its folded conformation through this energy landscape to an ⁸ coordinate is not necessary the same (black pathway).

MECHNICAL denaturation of non-mechanical protein??? Single Molecule Study on STRUCTRAL TRANSITIONS

Specifically, how much the typical two-state behavior in thermal/salt induced denaturation of MBP would be preserved in mechanical denaturation?

denaturation coordinate.

Unfolding of Single MBP Molecules

The sequential unfolding events of the MBP only occur at the ends of beta-sheet regions, suggesting that cooperative interactions exist between two neighbouring secondary beta strands within a single protein molecule.

orane Restructuring ation with Dr. Linda J. Johnston matic Generation of Ceramide M and Fluorescent Microscopy	Ceramide involved as a messenger in signaling during Apoptosis cell differentiation and growth suppression. → Restructuring of the cell membrane lipids.	
Memk Collabora Induced by Enzy using Integrated AFN	velin: Cholesterol (DEC 2:2:1)	
AC-CARC Steacie Institute for Molecular Sciences	DOPC(TR0.3%): Egg Sphingom	FL image

Matrix Elasticity Direction Plote Regime Nuscle Collogenous Bue fluid 1 kPa 10 kPa 100 kPa 100 kPa 100 kPa 100 kPa 25 - 40 kPa 0.1 - 1 kPa 8 - 17 kPa 8 - 17 kPa 8 - 17 kPa 10 kPa 0.1 - 1 kPa 8 - 17 kPa 8 - 17 kPa 10 kPa 0.1 - 1 kPa 8 - 17 kPa 10 kPa 0.1 - 1 kPa 8 - 17 kPa 10 kPa 0.1 - 1 kPa 8 - 17 kPa 10 kPa 0.1 - 1 kPa 8 - 17 kPa 10 kPa 10 kPa 0.1 - 1 kPa 10 kPa	ts Stem Cell Lineage	Microenvironments appear important in stem cell lineage specification.	Naive mesenchymal stem cells (MSCs) are shown here to specify lineage andcommit to phenotypes with extreme sensitivity to tissue level elasticity.	AFM was used for Matrix Elasticity and Cell Mechanics Measurements.	The results have significant implications for understanding physical effects of the in vivo	microenvironment and also for therapeutic uses of stem cells. DE Discher Cell (2006)126, 677.
Adtrix Elas:	ticity Direc	Collagenous Bone 1 100 kPa :	Collagen-I	25 – 40 kPa		
© 96 hrs 24 hrs 0.1 - 1 kPa 0.1 - 1 kPa 0.1 - 1 kPa 10% serum 1 kPa 1 k	atrix Elas	Muscle 10 kPa	MSC	8 – 17 kPa		
	Σ	Solid Tissu Blood Brain fluid 1 kPa	h Elas	4 Jrs	SJU 1 7	5JU 96 D

Steacie Institute for Molecular Sciences

S	eq	nen	tial Unf	oldii	ng of l	MBP	
	Y			Wel	l match - ups of se	β sheets unfold as condary structure.	
				Note hydro ends with all ch	that this doe ogen bond cl of β-sheet re a minimum ti lain dynamic	es not imply that the β-strand eavages necessarily initiate at the egions, since the cantilever probes ime constant of 100 microseconds – s within that time period are	
	B			integ asso not o struc unfol	rated into a s ciated with g bserved, whi tures of MBF ding those a	single response. Transitions roups of alpha helical structure are ich indicates that beta sheet ^o are more resistant to mechanical lpha helical structures.	
Extension (nm)	25	38	43	54	66	81 90 106 109	
Assigned positions	301	265	251	222	187	144 119 78 64 	
eta - strand ends	301	 264 25	i4 249 245	223	183 170	145 116 110 106 99 77 62 38	10
Division	0aa	1aa	2aa	-1aa	4aa	-1aa 3aa 1aa 2aa	
20							

Γ

24 The probabilities of observing transitions at different strand ends are not equally distributed.

Maltose Binding Protein Unfolding

the Multiple unfolding force transitions observed in unfolding experiments of single MBP molecules

C terminus attachments destabilize secondary structure unit nearest to it, thus the unfolding starts from C terminus.

Funding from NSERC, Cystic Fibrosis Foundation, CRC

Probabilities of Force Transitions of MBP

~~	bilities	probal	f the p	thm o	logari	o the	ated t	ing rel	f bind	gies o	2ener(
 0	0.400	0.067 10 the	oulatir	<mark>9, cal</mark>	ated t	eStim	an be	ghts c	^{0,467} .	0.067 Darriet	probability
			185				251		301	(340)	M998
				224	144			260	302	325	M314
	65		191	222	144			264	306	(345)	M234
 (43)			193		145		249(b)				M871
			188		146	118	251		300	(338)	M1034
			185	222	144		249	266			M636
			174	222	145			259-269			417
			186		144			263-271			50
	60	102		220	145		247	78			618
	63		163	220			253				307
			188		144	119-116	251	78			67
	63		181	228	148				301		624
	65		187						310		78
			185		144					(339)	1034
	63		187	219	145	121	251	265	301		C235
								266→77* 264→62*			Curvè name
 38→9	62⇒10	102 <i>→</i> 99	183 → 170	223→116	223→145		254→249	264→106	301→110	328→257	
 ×	ſ		н	9	L	ш	Q	ပ	8	A	Beta sheet

•

:

.

Suggested Multiple Barrier-crossing Unfolding Process w/o **Applied Forces**

	×	38→9	0	
	٦	62→10	0.400	(
		102→99	0.067	
	I	183→170	0.867	
)	G	223→116	0.533	
)) -) -	LL.	223→145	0.800	
5)	ш	245→116	0.200	
	٥	254→249	0.533	
	ပ	264→106 266→77* 264→62*	0.533	
	ß	301→110	0.467	
	A	328→257	0.067	
	Reta sheet		probability	

Assume: the barrier heights to unfolding Not assuming: the protein is misfolded; <u>D(0.5)</u> G(0.5) binding related to the logarithm of calculating the energies of the probabilities (A to K) relative to The barriers heights were estimated B(0.6) C(0.5) the probability of H. J(0.8) E(1.5) A(2.6) I(2.6) by K(8)

0 ⊲

27

are close to k_bT in energy.

F(0.1)_{H(0.0)}

K(∞) > A(2.6) = I(2.6) > E(1.5) > J (0.8) > B(0.6)

the relative barriers to unfolding:

> C(0.5) = D(0.5) =G(0.5) > F(0.1) > H(0.0)

Extension

In the presence of maltose, the capture MBP at the His-tag end indicates that upon binding the reduces accessibility of the Cprobability for the AFM tips to conformational change which decreased by at least 50% → igand, MBP undergoes a terminal region. With and without ligands, MOST of the unfolding force transitions of MBP match with each other, indicating that the main unfolding barrier positions are not influenced by the ligand binding.

reported optical tweezers data, where two-state behavior Noticed that our results CONTRAST those with recently was observed. ?? a protein conformation bound to mica surface that disrupted protein folding or caused partial Change sample surface! denaturation.

The setup of an SMD simulation. The SMD reference file determines which atoms are fixed in space and which ones are fixed to the moving restraint ^{Harmonic spice} (dummy atom) via a harmonic potential. Setup for SMD simulations. Water box in red, MBP-29 in blue. Total system size: 190 x 50 x 50 Å³ containing 39513 atoms. The pulling direction in this picture is towards the right.

Salmonella-nanoprobe complex

Transmission

Fluorescence-transmission composite

NAC-CNAC

Steacie Institute for Molecular Sciences

Single Molecule Manipulation Techniques

Method	Force range	Dynamical	Minimum
	(Nd)	range	displacement [nm]
Magnetic beads	0.01–100	<	10
Optical tweezers	0.1–150	> 10 ms	10
Microneedles	> 0.1	> 100 ms	÷
BFP	0.5–1000	> 1 ms	10
AFM	ر ۸	> 1 µs	0.1
Typical applicat Actin stretching	ion:		

Stretching of DNA, protein, polysaccharides, synthetic polymers Membrane anchors, receptor-ligand pairs

unzipping and twisting DNA

