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Abstract: A sampling algorithm that uses a high-resolution voltmeter for accurately measuring the 
magnitudes of the harmonics of low-frequency, arbitrary voltage signals is presented. The technique is an 
extension of a previously described approach. The uncertainties associated with the magnitude estimates 
relative to the fundamental depend on signal stability, harmonic content, and noise variance, and are less than 
1.3×10-5 for signals with up to 64 harmonics. The differences between computed and measured values 
suggest that stable, digitally-synthesized signal generators can be used as calculable standards of harmonic 
distortion with an accuracy of less than 6 parts in 105 relative to the fundamental. 
 
 

2. MODEL 1. INTRODUCTION 
  

It is assumed that the noise level is low enough so 
that the fundamental frequency f0 can be known 
from an internal DVM command or from the number 
of zero crossings of the signal. The fundamental 
frequency is used as an input to an algorithm that 
computes the sampling period tsamp and the number 
of samples N in a burst, so that N⋅tsamp approaches 
an integer number of signal periods and tsamp attends 
the sampling theorem for the specified number of 
signal harmonics [1]. A total of n bursts are taken. 
The internal level trigger of the DVM is used to start 
each burst delayed by ktD (k = 0, …, n−1) from a 
signal null-crossing. It is assumed that each burst 
can be modeled by 

The Swerlein´s algorithm (as it is now called in 
industry) was developed for the accurate 
measurement of RMS voltage at low frequencies 
using a digital voltmeter [1]. However, the discussed 
principles can also be extended to other digitizing 
instruments. The voltmeter is used in the DC voltage 
mode in which the voltage signal is directly applied 
to the input of a high-resolution integrating A/D 
converter (IADC). The algorithm has been 
exhaustively tested [2], [3]. An evaluation of 
uncertainty in measurement according to the ISO 
GUM [4] was recently published [5]. 
 
An extension of Swerlein’s algorithm for accurately 
measuring the magnitudes of the harmonics of a 
low-frequency, low-distortion, voltage signal was 
already published [6]. It is shown in [7] that this 
extension allows one to obtain results with 
asynchronous sampling that numerically approach 
those obtained using synchronous sampling [8]. The 
contribution of this paper is to further extend the 
algorithm version based on discrete Fourier 
transforms described in [6] for accurately measuring 
the harmonic magnitudes of periodic nonsinusoidal 
signals. The algorithm fits the parameters of a 
truncated Fourier series to noisy discrete time 
readings. The sampling parameters are evaluated 
as in [1], thus avoiding the problems related to the 
frequency accuracy and to the choice of the best 
operating setting of the converter that were pointed 
out in [9]. 

 xWy kk = ,       (1) 

where yk = (y1k, …, yNk)′ is the data vector at the k-th 
burst, Wk is the known N × 2m matrix with (i, j)-th 
element cos 2πjf0(ti+ktD) for j = 1, …, m and sin 
2π(j−m)f0(ti+ktD) for j = m+1, …, 2m, x is the 2m-
vector of fitting parameters (uncorrected for the 
systematic effects), jf0 is the j-th harmonic (j = 1, …, 
m) of the known constant fundamental frequency f0, 
and m is the specified number of harmonics of the 
truncated Fourier series. The model assumes that 
the signal is stationary (x is the same for all bursts), 
the data set has a zero mean value (any nonzero 
average value has been subtracted from the data) 
and that the uncertainty associated with the time 
quantities can be disregarded.  
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The best estimate of x, assuming that the variance 
of the Gaussian uncorrelated noise superimposed 
on the samples is the same over all bursts, is [7] 
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where Fk = Wk′Wk. 
 
The error matrix Λk = Fk − (N/2)I2m for each value of 
ktD  where I2m is the identity matrix of order 2m, can 
be nullified if one increases the measurement time 
N⋅tsamp. However, in order to keep the latter at a 
reasonable value, the algorithm tries to make N⋅tsamp 
nearly equal to an integer number of periods, so that 
Fk becomes nearly diagonal. The diagonal elements 
of Λk at each burst are bounded by the smaller of 
1/4N or q/4tsamp [1][7], where q is the time base 
resolution of the integrating A/D converter (IADC). 
 
The algorithm designs the experiment so that the 
matrix resulting from the first summation in (2) is 
diagonalized. If one chooses tD nearly equal to 1/nf0 
and the average of Fk over all bursts is evaluated, 
the “frozen” error matrices Λk will be cancelled. For 
instance, for a 60-Hz signal with m = 42, it was 
verified that all elements of the matrix 〈Λk〉, where 〈⋅〉 
denotes the average over all bursts, were less than 
4 parts in 108, with the majority being one order of 
magnitude less than that. (Since the frequencies in 
the diagonal elements of Λk are 2jf0 for j = 1, …, m 
and 2(j−m)f0 for j = m+1, …, 2m, the sampling 
theorem implies a maximum value for tD of 1/4mf0, 
i.e., a minimum number of 4m bursts, if the 
waveform is to be sampled over a period.). Thus, the 
average of Fk over all bursts approaches (N/2)I2m 
and therefore the estimate (2) approaches the 
average of the discrete Fourier transforms over all 
bursts, i.e., 
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The covariance matrix associated with the estimate 
(3) is a diagonal matrix of order 2m with diagonal 
element, for large nN − 2m, [7] 
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As shown elsewhere [1][2],[5]-[9], the DVM input 
stages and nonideal sampling introduce several 

systematic errors that need to be corrected. After 
being applied to the DVM input terminals, the signal 
is conducted to a passive signal conditioner and an 
active amplifier. The frequency response correction 
of these input stages and the uncertainty associated 
with the estimate are, respectively, [7] 
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where fc = f0/bw and bw, u(bw) are, respectively, 
the bandwidth of the input stages and the associated 
uncertainty both provided by the manufacturer [1]. 
 
Finally, the signal is applied to the IADC. The IADC 
frequency response correction and the uncertainty 
associated with the estimate are, respectively, [7] 
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where ωj = πjf0, taper is the aperture time (see 
section III), and u(taper) is evaluated from the 
uncertainty associated with the IADC time base 
resolution [1][5]. 
 
The IADC uses an internal dc voltage reference that 
has to be periodically calibrated against an external 
dc reference standard. The correction estimate kdc is 
obtained from the DVM dc voltage mode calibration 
certificate with an uncertainty u(kdc). The 
manufacturer states the linearity error limits [−c, c] 
for each voltage range and calibration period. The 
24-h basic accuracy is chosen in this paper. The 
correction estimate kL is unity with an uncertainty 
c/√3. The basic 24-h accuracy discussed above is 
based on an aperture time of 1 s or greater. For 
shorter apertures, the accuracy is reduced. The 
limits of the gain error [−d, d] as a percentage of the 
reading are provided by the manufacturer. The 
correction estimate kG is unity with an uncertainty 
d/√3. For the DVM used in this paper, the error limit 
d was modelled as [1] 
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The algorithm for calculating the sampling 
parameters is structured to guarantee immunity 
against aliasing only for the minimum number of 
harmonics m specified by the user [1]. The 
maximum sampling period should not violate the 
sampling theorem, i.e., tsamp < 1/2mf0. If it does, the 
algorithm increases the sampling frequency in order 
to ensure the alias occurrence exactly at mf0. The 
algorithm takes this into account and estimates the 
aperture time as taper = tsamp – τ, where τ (= 30 µs) is 
a small delay specified by the manufacturer [1] to 
prevent trigger-too-fast errors. Due to the above 
bandwidth requirement the actual aperture time is 
kept almost constant around 0.001 s up to m = 
1/2f0tsamp where it starts decreasing with increasing 
signal frequency as taper = 1/2mf0 – τ. If m is very 
high, the aperture time will be very small, and this 
will cause the voltmeter accuracy to be degraded 
(the uncertainty contribution associated with the 
IADC gain error correction increases with 
decreasing aperture time). However, this 
contribution may be neglected if one is interested in 
the values of the harmonic magnitudes relative to 
the fundamental. 
 
The IADC has two inputs: a low-speed input and a 
high-speed one [10]. The aperture time is used to 
select between the two. The threshold is 100 µs and 
is reached at mf0 = 1/0.00026 Hz. When making 
measurements with 6½-digit resolution or above, the 
input voltage is applied to the low-speed input. For a 
60-Hz signal, this amounts to choosing m ≤ 64. This 
choice is reasonable when the signal does not 
present significant harmonic magnitudes for m > 64. 
The algorithm can operate with fundamental 
frequencies ranging from 2 Hz to 1 kHz. The 
uncertainty associated with the frequency response 
correction (5) is the dominant contribution at high 
frequencies. For a 1-kHz signal, the 100-µs 
threshold is reached at m = 3. The higher the 
fundamental frequency, the less distorted the signal 
should be in order to be accurately measured. 
 
The measurement time of the algorithm increases 
roughly proportional to m for aperture times greater 
than 100 µs and roughly proportional to m2 for 
aperture times below this threshold. 
 
Since the uncertainty associated with the average 
error matrix 〈Λk〉 is negligible, the RMS magnitude of 

the j-th harmonic of a stationary signal, corrected for 
all known systematic effects, is [7] 

      ( ) ( ) ( ) ( )( )[ ] 2122
0int0bwGLdc 2jmjj jfkjfkkkk ++⋅= xxV

  j = 1, …, m      (8) 
 
where the symbol (⋅)j denotes the j-th element. The 
elements of x are uncorrelated. Assuming that the 
corrections are also uncorrelated, the uncertainty 
associated with the magnitude of the j-th harmonic is 
[7] 
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where the noise variance contribution is in general 
dominant for j = 2, …, m (for signals with small and 
monotonically decreasing harmonic magnitudes 
relative to the fundamental). The uncertainty 
associated with the magnitude dj of the j-th harmonic 
(j = 2, …, m) relative to the fundamental V1 is 
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where again the noise variance contribution is in 
general dominant. 
 
The above analysis assumes that the actual 
frequency of the sampled waveform is stable and 
known (the time base accuracy is not important). 
The sensitivity of the output to frequency errors was 
evaluated by numerically inserting errors into the 
algorithm and checking the output for any variation. 
No difference was detected at the estimates for Vj 
when the errors were within ±10-5. Besides, no 
difference was detected at the estimates for dj when 
the errors were within ±10-4. An uncertainty within 
these limits is easily attainable by the frequency 
measurement methods previously mentioned. In any 
case, the noise variance (4) increases with 
increasing frequency error, yielding more 
conservative uncertainty estimates. 

3. RESULTS 
 
Generators of calibrated harmonics have been 
reported in the literature [11][12]. However, the 
evaluation of the algorithm described above requires 
a standard of harmonic distortion with accuracy and 
stability at the level of a few parts in 106. Therefore, 
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a stable, high-resolution DVM controlled by the 
algorithm was used instead to measure the 
harmonic magnitudes of periodic signals generated 
by a stable, digitally-synthesized, arbitrary signal 
generator (also used in [6]). The latter synthesizes 
the signals in a staircase or zero-order-hold 
approximation. The values stored in memory are 
equally-spaced samples of these signals with 2048 
discrete steps per period with 12-bit amplitude 
resolution. The shape of each signal is specified 
mathematically. 
 
The computation of the complex-exponential Fourier 
coefficients for piecewise linear waveform functions 
is straightforward [13]. The technique is to 
differentiate the function until the first occurrence of 
impulse functions. The Fourier coefficients of the 
resulting impulse train are determined and the result 
divided by 2πmf0√-1 to return to the Fourier 
coefficients of the original function. One should be 
careful to include all steps (even the step between 
the end of a period and the start of the next) of the 
staircase waveform function when computing the 
Fourier coefficients. 
 
Three 60-Hz nonsinusoidal signals in the 10 V range 
were synthesized and separately applied to the DVM 
input: (a) a sinusoidal signal (staircase version), (b) 
an alternating parabolic signal, and (c) a half-wave 
rectified signal (with adequate dc component to 
provide the necessary signal null-crossing). The 
Fourier coefficients relative to the fundamental were 
numerically evaluated for each signal and compared 
with the algorithm output. The stability figures 
provided by the algorithm were the same as those 
reported in [1]. The staircase waveform functions 
and the results obtained are described below. 
 
3.1 SINUSOIDAL SIGNAL (STAIRCASE) 
 
The ideal waveform is 
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and the synthesized waveform is 
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where p = 3.1415. The algorithm took about 40 s to 
evaluate the magnitudes of the first 8 (eight) 
harmonics. The reported total harmonic distortion 

(THD) was 0.0846%. The algorithm selected n = 32 
bursts of N = 429 samples spaced by tsamp = 
0.001049 s (with taper = 0.001019 s). The 
fundamental  magnitude was measured with an 
uncertainty of 2.9 µV V−1. The harmonic magnitudes 
relative to the fundamental were measured with an 
uncertainty of 2.4×10-6. The differences between 
computed and measured values were less than 
3.8×10-5 relative to the fundamental (Table I). 

Table I Computed and measured values for a 
sinusoidal signal (staircase version). 

Magnitude (%) Harm. 
No 

Comp. Meas.(dj) 
u(dj) 
(106) 

Error 
(106) 

1 100.000 100.000 - - 
2 0.06123 0.06165 2.4 4 
3 0.03443 0.03060 2.4 38 
4 0.02449 0.02497 2.4 5 
5 0.01913 0.02023 2.4 11 
6 0.01574 0.01554 2.4 2 
7 0.01339 0.01494 2.4 15 
8 0.01166 0.01088 2.4 8 

 
 
3.2 ALTERNATING PARABOLIC SIGNAL 
 
The ideal waveform is 
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and the synthesized waveform is 
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               (14) 
The algorithm took about 1 min to evaluate the 
magnitudes of the first 13 harmonics. The reported 
THD was 3.7658%. The algorithm selected n = 52 
bursts of N = 336 samples spaced by tsamp = 
0.0006449 s (with taper = 0.0006149 s). The 
fundamental magnitude was measured with an 
uncertainty of 2.7 µV V−1. The harmonic magnitudes 
relative to the fundamental were measured with an 
uncertainty of 1.6×10-6. The differences between 
computed and measured values were less than 
3.1×10-5 relative to the fundamental (Table II). 
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Table II Computed and measured values for an 
alternating parabolic signal. 

Magnitude (%) Harm. 
No Comp. Meas.(dj) 

u(d ) j
(106) 

Error 
(106) 

1 100.000 100.000 - - 
2 0.06019 0.06009 1.6 2 
3 3.66799 3.67116 1.6 31 
4 0.03010 0.02957 1.6 5 
5 0.77685 0.77588 1.6 9 
6 0.02006 0.02028 1.6 2 
7 0.27468 0.27328 1.6 14 
8 0.01505 0.01493 1.6 1 
9 0.12395 0.12514 1.6 12 

10 0.01204 0.01277 1.6 7 
11 0.06427 0.06615 1.6 19 
12 0.01003 0.00966 1.6 4 
13 0.03630 0.03889 1.6 26 

 

3.3 HALF-WAVE RECTIFIED SIGNAL 

The ideal waveform is 
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The algorithm took about 6.35 min to evaluate the 
magnitudes of the first 64 harmonics. The reported 
THD was 43.5645%. The algorithm selected n = 256 
bursts of N = 168 samples spaced by tsamp = 
0.0001303 s (with taper = 0.0001003 s). The 
fundamental magnitude was measured with an 
uncertainty of 13 µV V−1. The harmonic magnitudes 
relative to the fundamental were measured with an 
uncertainty of less than 5.9×10-6. The differences 
between computed and measured values were less 
than 6.0×10-5 relative to the fundamental (Table III). 
 
4. DISCUSSION 
 
It was verified that the harmonic magnitudes of low-
noise arbitrary signals can be measured with an 
uncertainty of less than 13 µV V−1. The maximum 
number of harmonics that can be accurately 
measured depends on the signal fundamental 
frequency, being 64 for a 60-Hz signal (observe that 

the aperture time for m = 64 is close to the threshold 
tsamp = 100 µs) and 3 for a 1-kHz signal.  
 
The differences between computed and measured 
values suggest that stable, digitally-synthesized 
signal generators can be used as a calculable 
standard of harmonic distortion with an accuracy of 
less than 6 parts in 105 relative to the fundamental. 
 
5. CONCLUSIONS 
 
It was shown that an algorithm based on discrete 
Fourier transforms and Swerlein´s algorithm can be 
used to measure the magnitudes of the harmonics of 
low-noise arbitrary signals at low frequencies. 
Periodic nonsinusoidal signals were synthesized by 
a commercial source and measured by the 
algorithm. The differences between computed and 
measured values suggest that stable, digitally-
synthesized signal generators can be used as 
calculable standards of harmonic distortion. 
 
REFERENCES 
 
[1] R. L. Swerlein., “A 10 ppm accurate digital ac 

measurement algorithm”. In: Proc. NCSL, pp. 
17-36, Albuquerque, USA, Aug. 1991. 

[2] M. Kampik, H. Laiz, M. Klonz, “Comparison of 
three accurate methods to measure ac voltage 
at low frequencies”, IEEE Trans. Instrum. 
Meas., 49, No. 2, pp. 429-433, Apr. 2000. 

[3] R. Lapuh, A. Arnsek, I. Visocnik, Z. Svetik, 
“Evaluation of low frequency ac voltage 
measurement using integrating sampling 
technique”, IMTC Digest, 1999. 

[4] ISO/BIPM, Guide to the Expression of 
Uncertainty in Measurement, Geneva: 
International Organization for Standardization, 
1995. 

[5] G.A. Kyriazis, R.L. Swerlein, “Evaluation of 
uncertainty in ac voltage measurement using a 
digital voltmeter and Swerlein´s algorithm”, 
CPEM Digest, Ottawa, Canada, June 16-21 
2002. Extended version available from the 
authors. 

[6] G.A. Kyriazis, “Extension of Swerlein’s 
algorithm for ac voltage measurement in the 
frequency domain”, IEEE Trans. Instrum. 
Meas., 52, no. 2, pp. 367-370, Apr. 2003. 

[7] G.A. Kyriazis and M.L.R. Campos, “Bayesian 
inference of linear sine-fitting parameters from 
integrating digital voltmeter data”, Meas. Sci. 
Tech., 15, pp. 337-346, Feb. 2004. 

[8] W. Kürten Ihlenfeld, E. Mohns, H. Bachmair, G. 
Ramm and H. Moser, “Evaluation of the 

 5



Simposio de Metrología 2004  25 al 27 de Octubre 
 
 

synchronous generation and sampling 
technique”, IEEE Trans. Instrum. Meas., 52, no. 
2, pp. 371-374, Apr. 2003. 

[11] R. Arseneau, P. Filipski, “Portable and stable 
source of ac voltage, current and power”, IEEE 
Trans. Instrum. Meas., 44, no. 2, pp. 433-435, 
Apr. 1995. [9] U. Pogliano, “Precision Measurement of ac 

voltage below 20 Hz at IEN”, IEEE Trans. 
Instrum. Meas., 46, no. 2, pp. 369-372, Apr. 
1997. 

[12] U. Pogliano, “Tracking generator of calibrated 
harmonics”, IEEE Trans. Instrum. Meas., 51, 
no. 4, pp. 636-639, Aug. 2002. 

[10] W.C. Goecke, “An 8½-digit integrating analog-
to-digital converter with 16-bit, 100,000-sample-
per-second performance”, Hewlett-Packard 
Journal, Apr. 1989. 

[13] C.R. Paul, Introduction to Electromagnetic 
Compatibility, Wiley, pp. 352-359, 1992. 

 
 
 

Table III Computed and measured values for a half-wave rectified signal. 
Magnitude (%) Magnitude (%) Har. 

No Comp. Meas.(dj) 
u(dj) 
(106) 

Error 
(106) 

Har. 
No Comp. Meas.(dj) 

u(dj) 
(106) 

Error 
(106) 

1 100.000 100.000 - - 33 0.00282 0,00314 5.4 3 
2 42.4838 42.4782 5.9 56 34 0.11057 0,11013 5.4 4 
3 0.03444 0.02846 5.4 60 35 0.00266 0,00292 5.4 3 
4 8.49489 8.49689 5.4 20 36 0.09865 0,09816 5.4 5 
5 0.01914 0.01927 5.4 13 37 0.00252 0,00264 5.4 1 
6 3.64069 3.63908 5.4 16 38 0.08856 0,08755 5.4 10 
7 0.01340 0.01168 5.4 17 39 0.00240 0,00129 5.4 11 
8 2.02270 2.02127 5.4 14 40 0.07994 0,08037 5.4 4 
9 0.01034 0.00746 5.4 29 41 0.00228 0,00222 5.4 1 
10 1.28726 1.28748 5.4 2 42 0.07253 0,07250 5.4 0 
11 0.00843 0.00526 5.4 32 43 0,00218 0,00180 5.4 4 
12 0.89126 0.89422 5.4 30 44 0,06610 0,06714 5.4 10 
13 0.00712 0.00795 5.4 8 45 0,00209 0,00208 5.4 0 
14 0.65366 0.65330 5.4 4 46 0,06050 0,06171 5.4 12 
15 0.00616 0.00522 5.4 9 47 0,00200 0,00327 5.4 13 
16 0.49992 0.49963 5.4 3 48 0,05558 0,05571 5.4 1 
17 0.00544 0.00334 5.4 21 49 0,00192 0,00317 5.4 13 
18 0.39472 0.39656 5.4 18 50 0,05124 0,05017 5.4 11 
19 0.00487 0.00429 5.4 6 51 0,00185 0,00180 5.4 1 
20 0.31959 0.32059 5.4 10 52 0,04739 0,04703 5.4 4 
21 0.00440 0.00289 5.4 15 53 0,00179 0,00172 5.4 1 
22 0.26405 0.26739 5.4 33 54 0,04397 0,04460 5.4 6 
23 0.00402 0.00592 5.4 19 55 0,00173 0,00384 5.4 21 
24 0.22185 0.22297 5.4 11 56 0,04090 0,03797 5.4 29 
25 0.00371 0.00557 5.4 19 57 0,00167 0,00067 5.4 10 
26 0.18902 0.18892 5.4 1 58 0,03814 0,03845 5.4 3 
27 0.00343 0.00421 5.4 8 59 0,00162 0,00111 5.4 5 
28 0.16298 0.16295 5.4 0 60 0,03566 0,03573 5.4 1 
29 0.00320 0.00385 5.4 7 61 0,00157 0,00094 5.4 6 
30 0.14199 0.14217 5.4 2 62 0,03341 0,03368 5.4 3 
31 0.00300 0.00398 5.4 10 63 0,00152 0,00103 5.4 5 
32 0.12481 0.12417 5.4 6 64 0,03137 0,03219 5.4 8 
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