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Abstract: The uncertainty framework presented in the Guide to the Expression of Uncertainty in 
Measurement (GUM) is widely used. Whether the conditions attached to it hold for a problem of concern is not 
always verified. The possibility thus exists that some uncertainty evaluations based on the framework are 
invalid. This paper considers the application of a procedure for validating the framework in any particular 
instance. The procedure is based on an implementation of the propagation of distributions and constitutes part 
of Supplement 1 to the GUM, which has been developed by the Joint Committee for Guides in Metrology. 
 
1. INTRODUCTION 
 
The Guide to the Expression of Uncertainty in 
Measurement (GUM) [1] is founded on probability 
theory. Information concerning the values of 
quantities of concern is represented in terms of 
probability density functions (PDFs) for these values. 
In recognition, at the time of its development, of the 
difficulties of carrying out uncertainty evaluation for 
general (linear or non-linear) models using general 
PDFs, the GUM provided a simplified approach, 
termed here the GUM uncertainty framework.  
 
To overcome working with models that can be 
arbitrarily complicated, the GUM uncertainty 
framework primarily operates in terms of a model 
linearized about the best estimates of the values of 
the input quantities. Rather than working with the 
PDFs themselves, the framework operates with 
summary parameters of the PDFs, viz., expectations 
(means), standard deviations (and covariances in 
the case of joint PDFs), and degrees of freedom 
when appropriate. This information is used to 
propagate uncertainties and to assign a Gaussian 
PDF or a PDF related to the t-distribution to the 
value of the output quantity in order to obtain a 
coverage interval for that value. 
 
There are consequently conditions associated with 
the use of the framework, which ideally should be 
verified in any particular case. Since doing so is 
generally far from easy, it is appropriate to make use 
of a form of independent validation. 
 
This paper outlines guidance prepared in this 
regard. The probabilistic basis of the GUM and an 
approach termed the propagation of distributions [2] 
for generating the PDF for the value of the output 
quantity are outlined (section 2.1). All required 
uncertainty information concerning the value of the 

output quantity can be inferred from this PDF. The 
GUM uncertainty framework and conditions for its 
application are reviewed (section 2.2). A numerical 
approach, viz., Monte Carlo simulation (MCS) [2], to 
implement the propagation of distributions is 
summarized (section 2.3). A procedure based on 
MCS for validating the GUM uncertainty framework 
is presented (section 3) and an illustrative example 
from mass metrology given (section 4). The attitude 
taken to uncertainty evaluation and its validation is 
discussed and concluding remarks made (section 5). 
 
2. THE PROPAGATION OF DISTRIBUTIONS 

AND ITS IMPLEMENTATION 
 
2.1 The probabilistic basis of the GUM  
 
The GUM focuses on the use of a measurement 
model Y = f(X) to relate input quantities X, about 
which information is available, to an output 
quantity Y, about which information is required. 
Probability density functions (PDFs) are assigned to 
the values of X. These PDFs are obtained from an 
analysis of series of observations [GUM clauses 
2.3.2, 3.3.5]1 or based on scientific judgment using 
all the relevant information available [GUM 2.3.3, 
3.3.5]. There is a unique PDF for the value of Y 
given the model f and PDFs for the values of X. 
 
The determination of the PDF for the value of Y from 
the model f and the PDFs for the values of X 
constitutes the propagation of distributions. The PDF 
for the value of Y is a fundamental entity in that 
(a) its expectation (mean) is taken as the best 
estimate y of the value of Y, (b) its standard 
deviation is taken as the standard uncertainty u(y) 

                                                           
1 Subsequently, citations to clauses of the GUM are given, 
e.g., as [GUM 2.3.2]. 
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associated with y, and (c) it enables a 95 % (say) 
coverage interval for the value of Y to be formed. 

2.3 Monte Carlo implementation of the 
propagation of distributions 

  
An estimate of the value of Y is usually obtained by 
evaluating the model at the estimates x of the input 
quantities X. However, since the values of X are 
described by PDFs rather than single numbers, 
other realizations of the value of Y can be obtained 
by drawing values at random from these PDFs.  

2.2 The GUM uncertainty framework and 
conditions for its application 

 
The GUM provides a framework for calculating u(y) 
using the law of propagation of uncertainty [GUM 5] 
and a coverage interval for the value of Y by 
assigning a particular PDF to that value.  

Monte Carlo simulation (MCS) is a numerical 
implementation of the propagation of distributions 
based on this consideration. A particular value at 
random from the PDF for the value of each input 
quantity is generated and the corresponding value of 
Y formed by evaluating f(X) for these particular 
values. Repeating this process many times, M  
(= 105, say) values of Y are obtained. These values 
are used to approximate the distribution function (the 
indefinite integral of the PDF) for the value of Y. 

 
The law of propagation of uncertainty is based on an 
expansion of f about the best estimates x of X as a 
first-order Taylor series [GUM 5.1, 5.2]. Although 
this approximation is usually adopted, when the non-
linearity of f is significant, higher-order terms in the 
Taylor series expansion must be included in the 
expression for u(y) [GUM 5.1.2]. However, formulae 
for only the most important terms of next highest 
order are provided in the GUM. Moreover, although 
it is not stated there, these terms apply specifically 
to cases where all the values of X follow mutually 
independent Gaussian distributions. Thus, in 
particular, no corresponding formula for correlated 
input quantities is given, even in the Gaussian case. 

 
The value chosen for M controls the quality of the 
approximation obtained. The adaptive determination 
of M, rather than using an a priori value, in principle 
enables any numerical accuracy in the distribution 
function for the value of Y to be delivered. This 
statement applies to the formulated problem, viz., 
the model itself and the PDFs assigned to the values 
of X. It does not relate to the quality of the model as 
an adequate description of the measurement. 

 
In cases where at least one of the standard 
uncertainties associated with the estimates of the 
values of the input quantities has a finite degrees of 
freedom, the GUM establishes an ‘effective degrees 
of freedom’ of u(y). The Welch-Satterthwaite formula 
is used for this purpose. This formula is an 
approximation. No formula is provided when the 
values of X are mutually dependent. 

 
A basic implementation of an adaptive MCS 
procedure carries out an increasing number of 
Monte Carlo trials until the quantities of interest have 
stabilized in a statistical sense. A quantity is deemed 
to have stabilized if twice the standard deviation 
associated with the estimate of its value is less than 
the degree of numerical approximation required in 
the standard uncertainty u(y). 

 
To establish a coverage interval for the value of Y, 
the Gaussian PDF N(y, u2(y)) is assigned to this 
value, and the symmetric interval about y that 
embraces 95 % of the distribution taken. (A PDF 
based on the t-distribution is used when the degrees 
of freedom of u(y) are finite.) The validity of this 
assignment generally depends on the applicability of 
the Central Limit Theorem. This theorem does not 
hold, for example, for a small number of input 
quantities whose values are assigned PDFs rather 
different from Gaussian, or when there is an input 
quantity that is dominant and the value of which is 
assigned a PDF that departs appreciably from 
Gaussian.  

 
The process consists of undertaking a sequence of 
Monte Carlo calculations, each containing a small 
number, say, M = 104 trials. For each such 
calculation, form y, u(y) and the endpoints of a 95 % 
coverage interval from the results obtained. Denote 
by y(h), u(y(h)), ylow

(h) and yhigh
(h) the values of these 

quantities for the hth member of the sequence. 
 
After the hth Monte Carlo calculation (apart from the 
first) in the sequence, form the arithmetic mean of 
the values y(1), …, y(h)

 and the standard deviation 
s(y) associated with this mean. Determine the 
counterparts of these statistics for u(y), ylow

 and yhigh. 
Regard the overall computation as having stabilized 
if the largest of 2s(y), 2s(u(y)), 2s(ylow) and 2s(yhigh) 

 
In general, the GUM uncertainty framework can be 
regarded as an approximate implementation of the 
propagation of distributions, where there is no ‘user’ 
control over the quality of the approximation. 
 

2 



Simposio de Metrología 2004  25 al 27 de Octubre 
 

1. Apply the GUM uncertainty framework to yield a   
95 % coverage interval y ± U(Y) for the value 
of Y. 

does not exceed the degree of numerical 
approximation required in u(y). Use the results from 
the total number of Monte Carlo trials taken to 
provide an approximate distribution function for the 
value of Y, from which an estimate of the value of Y, 
the associated standard uncertainty and a coverage 
interval for the value of Y are obtained. 

 
2. Apply MCS to yield the standard uncertainty u(y) 

associated with an estimate of the value of Y 
and the endpoints ylow and yhigh of a 95 % 
coverage interval for the value of Y.  

The Joint Committee for Guides in Metrology 
(JCGM) is the body responsible for maintaining the 
GUM. It is developing supplements to the GUM, 
rather than explicitly changing the GUM itself. The 
first supplement [3] concerns the use of MCS as an 
implementation of the propagation of distributions, 
including the use of MCS as a validation facility. 

 
3. Let ndig denote the number of significant digits 

regarded as meaningful in the numerical value of 
u(y). Usually, ndig = 1 or ndig = 2. Express the 
value of u(y) in the form a ×10r, where a is an 
ndig–digit integer and r an integer. The 
comparison accuracy is δ = ½ × 10–r. 

  
3. VALIDATION PROCEDURE 4. Compare the coverage intervals obtained by     

the GUM uncertainty framework and MCS to 
determine whether the required numerical 
accuracy in the coverage interval provided by 
the former has been obtained. Specifically, 
determine the quantities |y – U(Y) – ylow| and  
Iy + U(Y) – yhigh|, viz., the absolute values of the 
differences of the respective endpoints of the 
two coverage intervals. Then, if both these 
quantities are no larger than δ the comparison is 
successful and the GUM uncertainty framework 
has been validated in this instance. 

 
Although the GUM uncertainty framework can be 
expected to work well in many circumstances, it is 
generally difficult to quantify the effects of the 
approximations involved in (a) model linearization, 
(b) the Welch-Satterthwaite formula for the effective 
degrees of freedom, and (c) taking the value of the 
output quantity as Gaussian. Indeed, the degree of 
complication of doing so would typically be 
considerably greater than that required to apply 
MCS. Therefore, since these circumstances cannot 
readily be tested, cases of doubt should be 
validated. To this end, since the propagation of 
distributions is more general and applies without 
approximation other than that related to random 
sampling, it is recommended that both the GUM 
uncertainty framework and MCS be applied and the 
results compared. If the comparison is favourable, 
the GUM uncertainty framework can be used (and 
also for sufficiently similar problems). Otherwise, 
consideration can be given to using MCS instead. 

 
As an example [GUM 7.2.2], the estimate of the 
value of a nominally 100 g standard of mass is  
y = 100.021 47 g and the associated standard 
uncertainty u(y) = 0.000 35 g. Thus, ndig = 2 and u(y) 
is expressed as 35 × 10–5 g, and so a = 35 and r = –
5. Take δ = ½ × 10–5 g = 0.000 005 g. 
 
4. EXAMPLE: MASS CALIBRATION 
 

 A model for the calibration of a weight W of mass 
density ρW against a reference weight R of mass 
density ρR having the same nominal mass using a 
balance operating in air of mass density a can be 
expressed [4] as 

Specifically, a comparison procedure is 
recommended based on determining whether the 
coverage intervals obtained by the GUM uncertainty 
framework and MCS agree to a stipulated degree of 
numerical approximation. This degree of 
approximation is assessed in terms of the endpoints 
of the coverage intervals and corresponds to that 
given by expressing the standard uncertainty u(y) to 
what is regarded as a meaningful number of 
significant decimal digits.  

 
mW,c = (mR,c + δmR,c){1 + (a – a0)(1/ρW – 1/ρR)}.     (1) 
 
Here, a0 = 1.2 kg/m3 and mW,c, mR,c and δmR,c are 
conventional masses. For instance, the conventional 
mass mW,c of W is the mass of a (hypothetical) 
weight of density ρ0 = 8 000 kg/m3 that balances W 
in air at density a0. As such, a0 and ρ0 are regarded 
as having no associated uncertainty.  

 
The concentration is on the coverage interval rather 
than u(y), since the former is almost invariably a 
more sensitive entity because of its distributional 
dependence. The procedure is as follows: 
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Table 1 lists the input quantities, regarded as 
mutually independent, and the PDFs assigned to 
their values for model (1). The semi-widths of the 
PDFs for the values of a, ρW and ρR (and hence the 
corresponding uncertainties) are ‘large’ because a is 
monitored rather than measured and of the extent of 
the knowledge of the values of ρW and ρR 

Table 1. The input quantities and the PDFs assigned 
to their values for the mass calibration model (1). A 
Gaussian PDF (G) is described by its expectation 
and standard deviation, and a rectangular PDF (R) 
by its expectation and semi-width. 

Input quantity PDF Parameter values 
mR,c G 100 000.000 mg, 0.050 mg 
δmR,c G 1.234 mg, 0.020 mg 
a R 1.20 kg/m3, 0.10 kg/m3 
ρW R 8 000 kg/m3, 1 000 kg/m3 

ρR R 8 000 kg/m3, 50 kg/m3 
 
Let δm = mW,c – mnom be the deviation of mW,c from 
the nominal value mnom = 100 g. The GUM 
uncertainty framework, and MCS with M = 105 trials, 
were each used to obtain an estimate δm of the 
value of the output quantity, the associated standard 
uncertainty u(δm) and a 95 % coverage interval for 
the value of the output quantity. The results obtained 
from these approaches are shown in the rows of 
Table 2 labelled GUF1 and MCS. Figure 1 shows 
the approximations to the PDF for the value of the 
output quantity obtained from the two approaches. 
 
The results show that, although the GUM uncertainty 
framework and MCS give estimates of δm in good 
agreement, the values for u(δm) are noticeably 
different. The value (0.075 5 mg) of u(δm) returned 
by MCS is 40 % larger than that (0.053 9 mg) 
returned by the GUM uncertainty framework. The 
latter is thus optimistic in this respect. The 
calculations using the GUM uncertainty framework 
were repeated, but including higher-order terms 
(using partial derivatives of up to third order) [GUM 
5.1.2]: see the row of Table 2 labelled GUF2. The 
results agree much better with those from MCS. 
 
Table 2 also shows in the right-most two columns 
the results of applying the comparison procedure of 
section 3 in the case where one significant digit is 
regarded as meaningful, i.e., ndig

 = 1 using the 
terminology of that section. Hence,  
u(δm) = 0.08 = 8 × 10–2, and so a = 8 and r = –2. 
Thus, δ = ½ × 10–2 = 0.005. The magnitudes of the 
endpoint differences are shown, and whether the 
use of the GUM uncertainty framework has been 
validated. If only first-order terms are accounted for, 

the application of the GUM uncertainty framework is 
not validated. If higher-order terms are included, the 
GUM uncertainty framework is validated. 

Table 2. Results for the mass calibration model from 
(a) the GUM uncertainty framework (GUF1), (b) 
MCS with 105 trials, and (c) GUF with higher order 
terms (GUF2). δm denotes the mass deviation, 
u(δm) the associated standard uncertainty, 95 % CI 
the endpoints of the 95 % coverage interval for the 
value of the output quantity value, dlow and dhigh the 
magnitudes of the endpoint differences and V 
whether the results were validated. 

Method δm /mg  
u(δm) /mg 

95 % CI dlow /mg 
dhigh /mg 

V 

GUF1 1.234 0 
0.053 9 

1.128 4 
1.339 6 

0.043 9 
0.044 6 

No 

MCS 1.234 3 
0.075 5 

1.084 5 
1.384 2 

  

GUF2 1.234 0 
0.075 0 

1.087 0 
1.381 0 

0.002 5 
0.003 2 

Yes 

 
5. DISCUSSION AND CLOSING REMARKS 
 
The GUM uncertainty framework, although seeming 
to work well in many circumstances, has some 
limitations. Regarding quality management systems 
and laboratory accreditation, it is appropriate that the 
extent to which this framework is fit for purpose for 
the tasks to which it can validly be applied is 
established. When the conditions for its use do not 
hold or, more likely, it is not known whether they 
hold, it is especially fitting that appropriate validation 
is carried out. If the validation fails, it is necessary to 
use instead an approach having the flexibility to 
provide the required uncertainties to a stipulated 
degree of numerical approximation. 
 
The GUM uncertainty framework can be regarded as 
an approximate implementation of the propagation 
of distributions. If the propagation of distributions 
could be implemented perfectly, it would provide a 
‘reference solution’, with which results obtained by 
applying the GUM uncertainty framework, or other 
approximate approaches, could be compared. Since 
such an implementation is not generally possible, it 
is reasonable that results from the GUM uncertainty 
framework be compared with those from an 
implementation of the propagation of distributions 
having a degree of approximation that is under some 
control. ‘Adaptive Monte Carlo’ endeavors to provide 
such control. The convergence of an adaptive 
approach is stochastic rather than mathematical. 
Consequently, there is no guarantee that a 
stipulated degree of numerical accuracy has been 
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achieved in any instance. However, the approach 
permits a form of control, which does not exist in 
general for the GUM uncertainty framework. 
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Figure 1. Approximations to the PDF for the mass 
deviation δm obtained using the GUM uncertainty 
framework and MCS. The solid curve represents a 
Gaussian PDF with parameters given by this 
framework. The histogram is derived from the MCS 
values as an approximation to the PDF. The solid 
vertical lines are the endpoints of a 95 % coverage 
interval for δm returned by the GUM uncertainty 
framework and the broken lines those from MCS. 

It is recommended that if a comparison of the results 
from MCS and from the GUM uncertainty framework 
is favourable, the GUM uncertainty framework can 
validly be applied to the current problem and to 
problems sufficiently close to it. If the converse is 
true, another approach should be considered, MCS 
itself constituting a natural candidate.  
 
Even if the use of the GUM uncertainty framework 
with higher-order terms is validated using MCS, it 
might be preferred to use MCS. A reason is that the 
partial derivatives required can be algebraically 
complex, even for the relatively simple mass 
calibration model of section 4. The possible difficulty 
associated with the maintenance of the resulting 
software is a consideration. Conversely, MCS is no 
more complicated, because only a means for 
forming model values need be provided. 
 
A mass example illustrated some of the issues. It 
has a feature in common with other models involving 
relative corrections that the standard uncertainty u(y) 
is underestimated by the GUM uncertainty 
framework based on the use of first order terms.  
Letting X = (X1

T, X2
T, X3

T)T, such models can be 

expressed as Y = f1(X1){1 + f2(X2)f3(X3)}, where f2(X2) 
or f3(X3) or both take zero values at the estimates x 
of the values of X. The resulting sensitivity 
coefficients associated with some of the 
uncertainties u(xi) are zero, as are the consequent 
contributions to u(y). 
 
This work constitutes part of the Software Support 
for Metrology (SSfM) programme within the UK’s 
National Measurement System. This paper is based 
largely on current and previous editions of an SSfM 
best-practice guide [4] and software specifications 
[5] for uncertainty evaluation. The latter document 
aims to contain sufficient explicit information to 
permit implementation of MCS as outlined in this 
paper. The current paper also reflects material 
embodied within Supplement 1 to the GUM [3]. 
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