Resultados del ININ en las Comparaciones SIM.RI(I)-K4 para Dosis Absorbida en Agua y SIM.RI(I)-K1 para Kerma en Aire en Haces de ⁶⁰CO

Víctor Tovar M., José T. Álvarez R.

Instituto Nacional de Investigaciones Nucleares Carretera México-Toluca S/N, 52750, Ocoyoacac, México. vmtm@nuclear.inin.mx

RESUMEN

Se comparan los patrones de kerma en aire K_a y dosis absorbida en agua D_W para haces de ⁶⁰Co de los laboratorios secundarios LSCD: CNEA Argentina, ININ México, IRD Brasil, IVIC Venezuela; y de los laboratorios primarios NIST y NRC Canadá (laboratorio piloto), pertenecientes al Sistema Interamericano de Metrología SIM; además del Laboratorio de dosimetría del Organismo Internacional de Energía Atómica IAEA, mediante una comparación indirecta que consiste en la determinación de coeficientes de calibración y su incertidumbre combinada de tres cámaras de transferencia Exradin A12. Finalmente, de comparaciones anteriores de los patrones primarios del NRC y NIST con el de la Oficina Internacional de Pesas y Medidas BIPM los resultados de estas comparaciones del SIM se relacionan con los valores de referencia de las claves de comparación KCRV determinados por el BIPM; los indicadores empleados en esta última parte son el grado de equivalencia *D* y su incertidumbre combinada u_c .

1. INTRODUCCIÓN

El empleo de las radiaciones ionizantes en radioterapia, RT, para el control tumoral tiene la restricción de que la dosis de radiación ionizante absorbida en el volumen tumoral D_T debe ser impartida con una incertidumbre expandida U(k=2) 5%, a fin de incrementar las posibilidades de éxito del tratamiento.

Esta limitante ha conducido al desarrollo de patrones primarios en términos de dosis absorbida¹ en agua D_W para sustituir a los patrones de kerma en aire K_a , con el objetivo de disminuir la U en las calibraciones de los haces externos de radiación utilizados en RT, y así disminuir la U de la D_T impartida al tumor.

Esta situación plantea dos problemas a resolver:

- 1. Los centros de RT en los hospitales deben cambiar su trazabilidad de patrones de K_a a patrones de D_W , mediante el cambio del protocolo de calibración de los haces de RT, por ejemplo del TRS 277 al TRS 398, [1], o del TG 21 al TG 51, [2].
- Los laboratorios secundarios de calibración dosimétrica LSCD deben brindar calibraciones de las cámaras de ionización-- empleadas a su vez en la calibración de los haces de los equipos de teleterapia (⁶⁰Co y aceleradores lineales)-- en

términos de D_W , con trazabilidad a patrones primarios.

Por lo tanto, el IAEA y el SIM se proponen verificar este segundo punto mediante la comparación de los patrones de K_a y D_W de manera indirecta, vía los coeficientes de calibración de cámaras de transferencia, calibradas en los LSCD del: CNEA Argentina, IVIC Venezuela y el IAEA; y los LSCD de los Institutos de Metrología (NMI): ININ México, y IRD Brasil; adicionalmente participan en esta las secciones comparación de radiaciones ionizantes de los laboratorios primarios pertenecientes al SIM: El NRC de Canadá que actúa como laboratorio piloto y el NIST de USA.

Finalmente, puesto que estos últimos laboratorios mantienen patrones primarios y han participado en comparaciones previas con el BIPM, los resultados de las comparaciones de este trabajo pueden ser referenciados a los valores KCRV mantenidas por el BIPM, [3, 4].

2. ESQUEMA DE LA COMPARACIÓN

La comparación emplea tres cámaras de ionización Exradin A12 series 101, 149 y 150. No se suministran electrómetros, por lo que cada laboratorio es responsable de la trazabilidad de sus medidas en carga o corriente.

Las cámaras con su capuchón de equilibrio electrónico se posicionan a una distancia fuente detector de 100 cm (como punto de referencia de la cámara se toma el centro de su volumen efectivo),

¹ **N. E.** En este artículo la energía bajo estudio se obtiene de una fuente de ⁶⁰Co que produce radiación ionizante; por lo que al leer el término "dosis absorbida" por ejemplo, debe entenderse como "dosis absorbida de radiación ionizante de ⁶⁰Co".

para un tamaño de campo de $10x10 \text{ cm}^2$ en el plano de referencia—plano que contiene al eje de la cámara y es perpendicular al eje del haz de radiación); la profundidad para las mediciones en agua es de 5 cm.

La diferencia de potencial aplicada en las cámaras es de 300 V, con la polaridad adecuada para obtener lecturas de carga positiva.

Las correcciones consideradas son:

- Por corrientes de fuga,
- Por normalización de la densidad del aire a las condiciones atmosféricas de referencia: 293.15 °K y 101.35 kPa.

Las cámaras se circularon de acuerdo al esquema de la Fig. 1, lo que permitió verificar la estabilidad de las cámaras de transferencia varias veces en el NRC y el IAEA.

Fig. 1. Esquema de circulación de las cámaras de transferencia.

Como se menciona, la comparación de los patrones se realiza indirectamente mediante la comparación de los coeficientes de calibración N de las tres cámaras de transferencia calibradas por cada laboratorio. Los coeficientes de calibración para K_a y D_W se definen respectivamente, como:

$$N_{\kappa} = \frac{\dot{K}_{a}}{Q} \qquad , \qquad (1.a)$$

$$N_{D_W} = \frac{\dot{D}_W}{\dot{Q}} \qquad , \qquad (1.b)$$

donde Q es la carga por unidad de tiempo, producida en la cavidad de aire de la cámara, cuando se somete a un campo de radiación cuya

rapidez kerma en aire es K_a -- o de una rapidez dosis absorbida en agua D_w .

Los cocientes de cada coeficiente de calibración se normalizan respecto del obtenido por el NRC, y se definen para cada comparación como:

$$\frac{N_{Ka,NMI}}{N_{Ka,NRC}},$$
 (2.a)

$$\frac{V_{Dw,NMI}}{V_{Dw,NRC}}.$$
 (2.b)

También se pide a cada laboratorio determinar la incertidumbre expandida U de los coeficientes de calibración, de acuerdo con la Guía para el cálculo de incertidumbres ISO/BIPM, [5].

Como los laboratorios primarios NRC y NIST han participado en comparaciones previas con el BIPM para las magnitudes K_a y D_W , por lo tanto se puede relacionar los resultados de las comparaciones de los laboratorios secundarios respecto del BIPM, considerando que [3, 4]:

$$\frac{N_{Ka,NRC}}{N_{Ka,RIPM}} = 1.0033 (31) , \qquad (3.a)$$

$$\frac{N_{_{Dw,NRC}}}{N_{_{Dw,BIPM}}} = 0.9976 \,(51) \ . \tag{3.b}$$

El indicador cuantitativo para estimar el grado de equivalencia D_i entre el *i*-ésimo NMI y el BIPM se define como la diferencia de R_i menos 1, (el KCRV se considera igual a la unidad, esta suposición equivale a establecer que el valor KCRV del BIPM no cambia con el tiempo):

$$D_i = R_i - 1, \qquad (4.a)$$

y para cada par NMI_i y NMI_j , el grado de equivalencia D_{ij} , se define como:

$$D_{ij} = R_i - R_j; \qquad (4.b)$$

aquí, R_i es el cociente del coeficiente de calibración determinado por el NMI_i respecto del obtenido por el BIPM, cociente formalizado como:

$$R_{i} = \frac{N_{X,NMi}}{N_{X,BIPM}} = \frac{N_{X,NMI_{i}}}{N_{X,NRC}} \cdot \frac{N_{X,NRC}}{N_{X,BIPM}} ,$$
(5)

donde, *X* representa la magnitud dosimétrica K_a o D_W , respectivamente, en cada comparación.

La incertidumbre u_{R,NMI_i} para el R_i se obtiene de combinar las incertidumbres de los coeficientes de calibración con la incertidumbre del cociente

$$\frac{N_{X,NRC}}{N_{X,BIPM}} , \text{ es decir:} u_{R,NMI}^{2} = u_{i}^{2} + u_{BIPM}^{2} + u_{r}^{2} - \sum_{k} [f_{k}u_{i}(k)]^{2} - \sum_{k} [f_{k}u_{BIPM}(k)]^{2} ,$$
(6.a)

donde u_i es la incertidumbre reportada por el NMI, u_{BIPM} es la incertidumbre reportada por el BIPM, u_i (k) es componente particular k de u_i , u_r es la incertidumbre del cociente $\frac{N_{X,NRC}}{N_{X,BIPM}}$, y f_k es un factor de correlación para las componentes de

incertidumbre k; por lo tanto los dos últimos términos de la Ec. (6.a) toman en cuenta las correlaciones entre el NMI y el BIPM.

Finalmente la incertidumbre entre cualquier par de laboratorios u_{ij} para el grado de equivalencia D_{ij} se calcula como:

$$u_{ij}^{2} = u_{i}^{2} + u_{j}^{2} - \sum_{k} [f_{k}u_{i}(k)]^{2} - \sum_{k} [f_{k}u_{BIPM}(k)]^{2}.$$
 (6.b)

3. RESULTADOS

En esta sección se muestran los valores de los coeficientes de calibración reportados por cada NMI y su cociente respecto del coeficiente del NRC para cada cámara, - Tablas 1 y 2; su incertidumbre combinada u_i reportada por cada NMI, Tablas 3 y 4; así como su grado de equivalencia, Tablas 5 y 6; respectivamente para cada comparación de los patrones de K_a y D_W ; cabe mencionar que debido al tamaño de las tablas, estas se presentan al final del trabajo.

4. DISCUSIÓN

4.1. Comparación SIM-RI(I)-K1 para K_a

De la Tabla 1 y Fig.2 se observa que los valores promedio de $\frac{N_{Ka}, NMI}{N_{Ka}, NRC}$ van desde 0.992 3 hasta

1.027, valores que son consistentes con el orden de las incertidumbres u_C reportadas en la Tabla 3.

Cabe remarcar que en esta Tabla 3, el ININ es el NMI con mayor incertidumbre debido a que incluye la componente de estabilidad de largo plazo del patrón, además de tener la mayor incertidumbre en la componente N_k , [6]. El laboratorio piloto NRC es que el reporta la menor incertidumbre.

Fig. 2. Razón del coeficiente de calibración del NMI respecto del NCR, para la comparación SIM RI(I)-K1.

Fig. 3. Grados de equivalencia D_{ij} y sus incertidumbres u_{ij} para la comparación SIM RI(I)-K1.

En cuanto al grado de equivalencia de los patrones de K_a respecto del KCRV del BIPM, ver segunda columna de Tabla 5 y Fig. 3, se concluye que el NIST y el IVIC (LSCD) presentan el menor grado de equivalencia, mayor inexactitud debido a que $D_i>0$)), sin embargo el patrón del ININ es el que mayor incertidumbre presenta entre pares de NMI.

4.2. Comparación SIM-RI(I)-K4 para D_W

Análogamente, de la Tabla 2 y Fig. 4, se observa que los valores para los promedios de las razones de los coeficientes de calibración van desde 0.9987 hasta 1.011 6, valores que son consistentes con el orden de las incertidumbres u_i reportadas en la Tabla 4.

El NMI con mayor discrepancia es el IRD, ver Fig. 4 y Tabla 6, aunque el ININ es el MNI con mayor incertidumbre debido a que se incluye la componente de estabilidad de largo plazo del patrón, y a que por error en la componente del factor de calibración $N_{D,w}$ se tomó la incertidumbre expandida y no la combinada, ver Tabla 6. Nuevamente el laboratorio piloto (NRC) es quien presenta la menor incertidumbre.

Fig. 4. cocientes de los coeficientes de calibración de los NMI respecto del NCR para la comparación SIM RI(I)-K4 en D_W .

Fig. 5. Grados de equivalencia D_{ij} y sus incertidumbres u_{ij} para la comparación SIM RI(I)-K4 en D_W .

En efecto, respecto al grado de equivalencia de los patrones de D_W respecto del KCRV del BIPM, el IRD presenta la mayor inexactitud (menor equivalencia), sin embargo el patrón del ININ es el que mayor incertidumbre presenta entre pares de NMI.

5. CONCLUSIONES

Para el caso del K_a el NIST y el IVIC (LSCD) son los que tienen menor grado de equivalencia, y para la comparación de D_W es el IRD, en ambos casos respecto del KCRV del BIPM.

El ININ es el NMI con mayor incertidumbre en ambas comparaciones, esta situación es insatisfactoria. Entre las causas y acciones correctivas para remediar esta situación se tienen:

- Calibrar los patrones nacionales de K_a y D_W en el BIPM, para reducir la u_c de los factores N_k y N_{D_W} .
- En el caso de la componente de largo plazo, tomar sólo la variación durante la duración de la comparación.
- Para la medición de la corriente o carga, por un lado, considerar que esta ya lleva implícita la incertidumbre del factor de corrección por condiciones atmosféricas. Por otro lado, mejorar los procesos de toma de temperatura dentro de la cavidad del aire de la cámara, mediante una cavidad de aire similar a la de dicha cámara.
- Realizar una verificación independiente del cálculo de las incertidumbres.

REFERENCIAS

- [1] IAEA, Absorbed Dose Determination in External Beam Radiotherapy. TRS 398. Vienna 2000.
- [2] AAPM, Task Group 51: Protocol for clinical reference dosimetry of high energy photon and electron beams. Med. Phys. 26,1847-1870, 1999.
- [3] Ross C.K, Final Report of the SIM Co Air Kerma Comparison. KCDB SIM.RI(I)-K1, October 2006.
- [4] Ross C.K, Final Report of the SIM Co Absorbed Dose-to-Water Comparison. KCDB SIM.RI(I)-K4, October 2006.
- [5] CENAM 1994. Guía BIPM/ISO para la Expresión de la Incertidumbre en las Mediciones., Reporte Técnico CNM-MED-PT-0002, Querétaro, México, 1994.
- [6] Álvarez Romero JT, Tovar Muñoz V, Cejudo Álvarez J. Cartas de control e incertidumbres de los patrones de kerma en aire, dosis absorbida en agua y dosis absorbida en aire del LSCD. Informe técnico: ININ-GANS-05-03. LSCD, ININ, 2005.

Cámara $ ightarrow$	1	01	14	49	1	Promedio	
NMI ↓	N_k , Gy C $^{ extsf{-1}}$	N _{kNMI} /N _{kNRC}	N_k , Gy C $^ extsf{-1}$	N _{kNMI} /N _{kNRC}	N_k , Gy C $^ extsf{-1}$	N _{kNMI} /N _{kNRC}	N _{kNMI} /N _{kNRC}
CNEA	45.16	0.997 4	45.80	0.996 0	45.02	0.997 3	0.996 9
IAEA	45.02	0.994 3	45.73	0.994 4	44.98	0.996 5	0.995 1
ININ	45.31	1.000 7	46.00	1.000 3	45.07	0.998 5	0.999 8
IRD	45.24	0.999 2	45.87	0.997 5	45.14	1.000 0	0.998 9
IVIC(LSCD)	44.93	0.992 3	45.61	0.991 8	44.82	0.992 8	0.992 3
NIST	45.40	1.002 7	46.11	1.002 8	45.26	1.002 7	1.002 7
NRC	45.28	1.000 0	45.98	1.000 0	45.14	1.000 0	1.000 0

Tabla 1. Comparación SIM.RI(I)-K1 para K_a . Cols. 2, 4 y 6: Valores de los N_k para cada cámara. Cols. 3, 5 y 7: Cocientes del coeficiente de calibración del NMI respecto del NCR. Col. 8. Promedio de cocientes de los coeficientes de calibración.

Tabla 2. Comparación SIM.RI(I)-K4 para D_W . Cols. 2, 4 y 6: Valores de los $N_{D,w}$ por cámara. Cols. 3, 5 y 7: Cocientes del coeficiente de calibración del NMI respecto del NCR. Col. 8. Promedio de los cocientes de los coeficientes de calibración.

Cámara \rightarrow		101		149		Promedio	
NMI ↓	N_{Dw} , Gy C ⁻¹	N _{DwNMI} /N _{DwNRC}	N_{Dw} , Gy C ⁻¹	N _{DwNMI} /N _{DwNRC}	N_{Dw} , Gy C ⁻¹	N _{DwNMI} /N _{DwNRC}	N _{DwNMI} /N _{DwNRC}
CNEA	49.38	0.999 4	50.08	0.997 2	49.27	0.999 6	0.998 7
IAEA	49.40	0.999 8	50.19	0.999 4	49.36	1.001 4	1.000 2
ININ	49.76	1.007 1	50.57	1.007 0	49.53	1.004 9	1.006 3
IRD	50.12	1.014 4	50.57	1.007 0	49.96	1.013 6	1.011 6
IVIC(LSCD)	49.28	0.997 4	50.11	0.997 8	49.38	1.001 8	0.999 0
NIST	49.34	0.998 6	50.16	0.998 8	49.23	0.998 8	0.998 7
NRC	49.41	1.000 0	50.22	1.000 0	49.29	1.000 0	1.000 0

Tabla 3. Incertidumbres combinadas u_i para los N_k reportados por los NMI. Comparación SIM.RI(I)-K1 para K_a .

	NMI		CNEA			IAEA		11	NIN			RD			IVIC			NIST		N	RC	
Тір	oo de Inc. (%)	A	\	в	Α	В		Α	B	3	Α		в	Α	1	в	A		в	Α	1	в
	Fuente ↓					Rapio	dez c	de K_a m	edido	con	el pati	ón										
1	Nk	-	0	.36	-	0.2		-	0.6	69	-	0.	.18	-	0	.4	0.1	1 0.	29	0.07	0.	31
2	Estabilidad	-	0	.07	-	0.2		0.34	-	-	-	0).2	-	0	.1	-		-	-		-
3	Posicionado	-		-	-	0.01		-	-	-	0.01	0).1	-	0.	02	-		-	-		-
4	Decaimiento	-		-	-	-		-	0.0	01	-		-	-		-	-	0.	01	-	0.	02
5	Temperatura y presión	-	0	.04	0.03	0.1		-	0.0	02	-	0.	.39	0.03	3 0	.1	-		-	-		-
6	Corriente	0.0)2 (0.3	0.05	0.1		0.03	-	-	0.01	0.	.11	0.05	5 0	.1	-		-	-		-
						•	Ins	trument	o de t	rans	ferenc	ia										
7	Posicionado	-	0	.03	-	-		-	0.0	06	0.01	0.	.03	-	0.	02	-	0.	02	0.01		-
8	Temperatura y presión	-	0	.04	0.03	0.1		-	0.0	02	-	0.	.39	0.03	3 0	.1	-	0.	07	.04	0.	06
9	Corriente	0.0)2 ().3	0.05	0.1		0.04	0.3	30	0.04	0.	29	0.05	5 0	.1	0.1	0 0.	.11	0.06	0.	06
	Suma Cuadrátic	а	0.03	0.	56 0.	08 0.35	0.3	34 0	76	0.0)4 (.70	0.0	08	0.46	0.	15	0.32	0.	10 0.	32	
	Incertidumbre combinada, u _c	(%)	0	.57		0.36		0.83			0.70			0.47	,		0.3	5		0.34		

Tabla 4. Incertidumbres combinadas u_i	para los N _{DW} reportados por los NMI.	Comparación SIM.RI(I)-K4 para	$la D_W$. ^a La
incertidumbre del NIST se incren	nento debido a la incertidumbre relaci	onada con el tamaño del campo,	[4].

	$NMI \rightarrow$	CN	ΙEA	IA	EA	IN	IN	IF	RD	IV	IC	NI	ST	NF	RC
Tij	oo de Inc. (%)	Α	в	Α	в	Α	в	Α	в	Α	в	Α	в	Α	в
	Fuente ↓				R	apidez d	e D_W me	edida coi	n el patró	'n					
1	NDw	-	0.43	-	0.3	-	1.1	-	0.3	-	0.5	0.16	0.32	0.21	0.35
2	Estabilidad	-	0.07	-	0.23	0.31	-	-	0.2	-	0.1	-	-	-	-
3	Posicionado	-	-	-	0.1	-	-	0.01	0.1	-	0.05	-	-	-	-
4	Decaimiento	-	-	-	-	-	0.01	-	-	-	-	-	0.05	-	0.02
5	Temperatura y presión	-	0.04	0.03	0.1	-	0.02	-	0.39	0.03	0.04	-	-	-	-
6	Corriente	0.02	0.3	0.05	0.1	0.05	-	0.01	0.11	0.05	0.1	-	-	-	-
						Instrum	ento de l	ransfere	ncia						
7	Posicionado	-	0.08	-	0.1	-	0.06	0.01	0.09	-	0.05	0.03	-	0.03	-
8	Temperatura y presión	-	0.04	0.03	0.1	-	0.02	-	0.40	0.03	0.04	0.04	0.06	0.04	0.06
9	Corriente	0.02	0.3	0.05	0.1	0.05	0.30	0.03	0.29	0.05	0.1	0.02	-	0.06	0.06
Su	ima Cuadrática	0.03	0.52	0.08	0.45	0.32	0.76	0.03	0.75	0.08	0.54	0.17	0.33	0.22	0.36
Inc co	certidumbre mbinada, u _c (%)	0.	62	0.	46	1.	18	1.	75	0.	55	0.37-	→ 0.6 ª	0.	42

Tabla 5. Comparación SIM.RI(I)-K1 para K_a . Grados de equivalencia D_{ij} y sus incertidumbres.

	NM	l j→	CN	IEA	IA	EA	IN	IIN	IR	D	IV (LS	IC CD)	
NMI i ↓	$ MI i\downarrow \qquad \begin{array}{c} D_i & u_i \\ & 10^{-3} \end{array}$		D _{ij} u _{ij} /10 ⁻³		D _{ij} /1	D _{ij} u _{ij} /10 ⁻³		D _{ij} u _{ij} /10 ⁻³		D _{ij} u _{ij} /10 ⁻³		D _{ij} u _{ij} /10 ⁻³	
CNEA	0.2	11.1			-1.5	12.9	-7.6	25.3	-12.9	17.5	-0.3	14.2	
IAEA	-1.6	6.7	-1.8	12.9			-6.1	23.9	-11.4	15.4	1.2	11.6	
ININ	3.1	16.4	2.9	25.3	6.1	23.9			-5.3	26.6	7.3	24.6	
IRD	2.2	13.7	2.0	17.5	11.4	15.4	5.3	26.6			12.6	16.6	
IVIC(LSCD)	-4.4	9.0	-4.6	14.2	-1.2	11.6	-7.3	24.6	-12.6	16.6			
NIST	6.0	7.4	5.8	17.3	-1.5	15.1	-7.6	26.5	-12.9	19.2	-0.3	16.3	
NRC	3.3	7.2	3.1	15.0	-0.2	12.5	-6.3	25.1	-11.6	17.2	1.0	13.8	

	NM	l j→	CN	EA	IA	EA	IN	IIN	IF	RD	IV (LS	IC CD)	
NMI i ↓	$\begin{array}{c c} NMI \ i \downarrow & D_i & u_i \\ & /10^{-3} \end{array}$		D _{ij} u _{ij} /10 ⁻³		D _{ij} /1	D _{ij} u _{ij} /10 ⁻³		D _{ij} u _{ij} /10 ⁻³		D _{ij} u _{ij} /10 ⁻³		D _{ij} u _{ij} /10 ⁻³	
CNEA	-3.7	11.1			1.8	12.6	-2.9	19.6	-2.0	17.4	4.6	14.0	
IAEA	-2.2	7.3	1.5	12.9			-4.7	17.4	-3.8	15.0	2.8	10.8	
ININ	3.9	22.9	7.6	25.3	4.7	17.4			0.9	21.2	7.5	18.5	
IRD	9.2	13.9	12.9	17.5	3.8	15.0	-0.9	21.2			6.6	16.2	
IVIC(LSCD)	-3.4	9.5	0.3	14.2	-2.8	10.8	-7.5	18.5	-6.6	16.2			
NIST	-3.7	13.6	0.0	17.3	7.6	10.0	2.9	18.0	3.8	15.7	10.4	11.7	
NRC	-2.4	10.3	1.3	15.0	4.9	9.9	0.2	17.9	1.1	15.6	7.7	11.6	

Tabla 6.	Grados	de equivalencia	D _{ii} v sus	s incertidumbres.	Comparación	SIM.RI(I)-K4	para Dw.
rubiu o.	Ciuuoo	ac equivalentia			Comparation		pure D_W .