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1. INTRODUCTION  

 

Measuring instruments usually are calibrated at 
discrete values; however, it is very useful for the 
user to have formulae to describe the errors

a
 of 

indications (and their uncertainties) as a function of 
the readings of the instrument. 
 
The Guidelines on the Calibration of Non-Automatic 
Weighing Instruments [1, 2] offers advice on how to 
derive formulae to describe errors related with the 
indications in use (R) by continuous functions. For 
this reason, it is interesting to make a comparative 
study of results arising from such approaches. 
 
In this paper, though, we analyzed only the different 
approaches stated in [1, 2] for weighing instruments 
calibration, these methods may apply for different 
kind of measuring instruments. 
 
2. FUNCTIONAL RELATIONS 

 
2.1. Linear interpolation 
 
This method assumes a linear relation between two 
consecutives errors E(I)

b
 and their uncertainties 

evaluated in calibration at the given indication (Ik, 
Ik+1) [1, 2], 
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2.2. Approximation by polynomials 

                                                           
a
 The meaning of “error” (of indication) considered in 

this work corresponds to “measurement error” (with 
regard to the indication) according to the new VIM 
[8]. 
b
 The notation I is used for the indication (reading) of 
the instrument at calibration, and the notation R is 

used for the indication (reading) in use after 
calibration. 

This method is based on the “minimum χ
2
”
 
 

approach,
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where, 

jp   weighing factor corresponding to indication j 

 (proportional to 
21 ju ) 

jv   residual corresponding to indication j 

f   approximation function containing parn  

 parameters 
 
Approximation by polynomial yields the general 
function, 
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where ai are the fitting coefficients and R is the 
reading of the measurement instrument. 
 
The evaluation of the coefficients is solved by 
weighing least squares [1, 2], 
 

( ) PeXPXXa
T1T −

=   (5) 

where, 

X  matrix whose m  rows are (1, jI , 
2

jI ,...,
n

jI ) 

a  column vector whose components are the 

 coefficients 0a , 1a ,   , na  of the 

 approximation polynomial  
e   column vector whose m  components are 

 the jE  

P  weighing matrix ( ( ) 1eP
−

= cov ), whose main 

 diagonal is formed by the inverse of the 
 variance of the errors. 
 
Variance and covariance of the fitting coefficients 
are given by the following matrix [1, 2]: 
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PXXa

−
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To calculate the error of the indication for any 
reading (different to the indications evaluated in 
calibration), it can be evaluated with (4) with 
coefficients ai obtained from (5). The uncertainty 

associated to this indication error is calculated with 
the combination of the uncertainty of the fitting 
coefficients, their covariance and the uncertainty of 
the indication R. 
 
2.3. Approximation by straight line 

 

This method is the particular case of 2.2 with 1=n , 

 

( ) ( ) RaaRfRE 10 +==   (7) 

 
Other possibility is to consider that the error in zero 
(indication) is null. In [1, 2] is proposed an 
approximation to a straight line that crosses through 
zero (a0 = 0) in non-matrix notation, 
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The evaluation of the error of the indication and its 
associated uncertainty are evaluated in the same 
way that in 2.2. 
 
Even when it is assumed that the line crosses trough 
zero (a0 = 0), this assumption has an associated 

uncertainty, a0 ± u(a0). This uncertainty is not 
considered in [1, 2], hence the uncertainty due to the 
fitting is underestimated. 
 
2.4. Numerical simulation by Monte Carlo’s 
method 
 
In order to evaluate the performance of the different 
methods to generate the continuous function 

( )RfE = , the results from such methods are 

compared against results arising from numerical 
simulation of Monte Carlo’s method [3]. 
 
The Monte Carlo’s method considered in [3], applies 
to a model of several input quantities and just one 
output quantity,  

 

( )nXXXfY ,...,, 21= )(ηg

)( nng ξ

)( 22 ξg

)( 11 ξg

( )nXXXfY ,...,, 21= )(ηg

)( nng ξ

)( 22 ξg

)( 11 ξg

 
Figure 1. Propagation of distributions for a 

measurement model with several input quantities 
and only one output quantity. 

 
However, a generalization [5, 7] to the model with 
several input quantities and several output quantities 
will be done in this paper, 
 

( )nXXXfY ,...,, 2111 =

( )
nXXXfY ,...,, 2122 =

( )nkk XXXfY ,...,, 21=)( nng ξ

)( 22 ξg

)( 11 ξg

)( kkg η

)( 22 ηg

)( 11 ηg( )nXXXfY ,...,, 2111 =

( )
nXXXfY ,...,, 2122 =

( )nkk XXXfY ,...,, 21=)( nng ξ

)( 22 ξg

)( 11 ξg

)( kkg η

)( 22 ηg

)( 11 ηg

 
Figure 2. Propagation of distributions for a 

measurement model with several input quantities 
and several output quantities. 

 
In general, the evaluation of the errors of the 
indications in use is solved in two steps: first, the 
fitting coefficients of the polynomial are calculated 
and second, the error for the reading in use R is 

calculated by means of such polynomial. 
 
In the numerical simulation developed for this work, 
the errors of the indications in use were calculated in 
one step, taking as the mathematical model for the 
simulation the combination of (4) and (5). The input 
quantities considered for simulations were Ij, Ej and 
Rk, where Ij, and Ej were the indications and the 
errors found in calibration, and Rk, were the 
indication in use (readings).The output quantities 
were the errors for the instrument E(Rk). 
 
The mean values and the standard uncertainties of 
the input quantities were considered as the means 
and the standard deviations for the input pdfs 

(probability density functions) )( iig ξ , and the 

means and standard deviations of the output pdfs 

)( kkg η  were taken as the mean values and the 

standard uncertainties of the output quantities. 
 
3. NUMERICAL EXAMPLES 
 

3.1. Errors characterized by a straight line  
 
For the numerical example, the results of the 
example G1 of [1, 2] were taken. The example 
shows the calibration of a weighing instrument of 



Simposio de Metrología 2010  27 al 29 de Octubre 
 

Centro Nacional de Metrología                                                                                                     SM2010-S5C-1 
3 

200 g of maximum capacity, and resolution of           
d = 0.1 mg. Calibration results are shown in table 1. 
 
The errors for different nominal values were 
evaluated. 
 
The standard uncertainty associated to a single 
indication, Ij, and to Rk was 0.14 mg (k=1), according 
to the example G1 of [1, 2]. The uncertainty 
associated to a single indication is the combination 
of the contributions of both resolution and 
repeatability of the measuring instrument. 
 
Table. 1. Discrete errors of indications evaluated in 

calibration and their standard uncertainties. 

Indication Error unc. k = 1 

g mg mg 

0 0.00 0.14 

30 0.10 0.19 

60 0.30 0.19 

100 0.40 0.19 

150 0.60 0.23 

200 0.90 0.24 

 
The fitting coefficients for a straight line and the 
variance-covariance matrix calculated with the 
above values are, 
 
=a  

a0 =  -5.143 1 x 10
-6
 g 

a1 =  4.317 8 x 10
-6
 

 

( ) =acov  

1.193 x 10
-8
 g
2
 -9.150 x 10-

11
 g 

-9.150 x 10
-11
 g 1.342 x 10

-12
 

 
The fitting coefficients ai for the approximation to the 

straight line that crosses through zero and their 
uncertainties are, 
 
a0 = 0.00 g ± 0.14 mg (k=1)

 c
 

a1 = 4.27 x 10
-6
 ± 7.6 x 10

-7
 (k=1) 

 
Figure 3 shows the graph of errors of indications 
calculated by different methods. In Figure 3 are 
presented only the bars of the uncertainties 
evaluated in calibration combined with the 

                                                           
c
 The value of a0 is assumed as zero, but it should 
be assigned an uncertainty value equal to a single 
reading of the instrument in use. For the calculation 
of the uncertainty of the error E(R) for this method, 
the correlation between a0 and a1 is not considered. 

contribution of the indication in use of the 
instrument. 
 
The series shown in Figure 3 correspond to the 
following approaches, 
1. Calibration,  
2. Linear interpolation,  
3. Approx. by first order polynomial,  
4. Approx. by straight line that cross through zero, 
and  
5. Numerical simulation. 
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Figure 3. Errors of indications in use of the 

instrument calculated by different approximation 
methods. 

 
In Figure 4 the uncertainties calculated by the 
different approximation methods are shown. 
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Figure 4. Expanded uncertainties associated to the 

errors of the indications evaluated by different 
approximation methods. 

 
From Figure 3, it can be noted that the errors 
evaluated by the different methods have almost the 
same values, but the uncertainties evaluated by 



Simposio de Metrología 2010  27 al 29 de Octubre 
 

Centro Nacional de Metrología                                                                                                     SM2010-S5C-1 
4 

those methods show differences indeed (see Figure 
4). 
 
3.2. Approximation by second order curve  
 
With the purpose to evaluate the performance of the 
approximation method by a second order 
polynomial, values of table 1 were intentionally 
modified to characterize a second order function. 
The modified errors and their corresponding 
uncertainties (without modification) are listed in table 
2. 
 
Table 2. Discrete errors of indications (intentionally 

modified) and their standard uncertainties. 

Indication Error unc. k=1 

g mg mg 

0 0.00 0.14 

30 0.10 0.19 

60 0.40 0.19 

100 1.20 0.19 

150 3.00 0.23 

200 6.50 0.24 

 
The values of the fitting coefficients for the second 
order function and the covariance matrix, evaluated 
by (5) and (6), are listed next,  
 
=a  

a0 =  6.881 9 x 10
-5 
g 

a1 =  -8.437 2 x 10
-6
  

a2 = 1.989 1 x 10
-7
 g
-1
 

 

( ) =acov  

1.655 x 10
-8
 g
2
 -3.320 x 10

-10
 g 1.324 x 10

-12
 

-3.320 x 10
-10 
g 1.384 x 10

-11
 -6.884 x 10

-14
 g
-1
 

1.324 x 10
-12
 -6.884 x 10

-14
 g
-1
 3.791 x 10

-16
 g
-2
 

 
With the above values, errors for selected 
indications as in normal use of the instrument were 
evaluated. 
 
The uncertainty values of the indication errors in use 
were evaluated taking into account the uncertainty 
contributions due to the fitting coefficients, their 
covariance and the uncertainty contribution due to 
the indication in use, (0.14 mg k=1). 
 
Subsequently, a numerical simulation by Monte 
Carlo’s method was performed and their results 
were compared against matrix method results. 
 

In Figure 5, the indication errors evaluated by both 
methods, and also the errors of indications found in 
calibration (table 2) are shown. The uncertainty 
values include the uncertainty contributions due to 
the calibration and due to the indication in use of the 
instrument. In Figure 5 only the expanded 
uncertainty bars for the discrete calibration values 
are shown. 
 
The data series correspond to, 
1.- Calibration,  
2.- Approx. by second order polynomial,  
3.- Numerical simulation.  
 
From Figure 5, as in the case of the straight line 
approximation, it can be noted that the errors 
evaluated by an approximation by second order 
polynomial and numerical simulation methods have 
almost the same values, but, the uncertainty values 
evaluated by these methods show differences with 
the calibration values and among them too, see 
Figure 6. 
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Figure 5. Errors of indications calculated by different 

approximation methods 
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Figure 6. Expanded uncertainties associated to the 
errors of the indications calculated by different 

approximation methods 
 
4  INTERPOLATION AND EXTRAPOLATION 
 
Usually, procedures for calibration of instruments 
should include the testing of limiting values of the 
range of the instrument (Min and Max), and as many 

as possible of nominal values to be tested between 
the limiting values; however, this is not possible to 
do for some calibrations, that is why it is important to 
analyse both interpolation and extrapolation 
calculations. 
 
4.1. Interpolation 
In order to evaluating the performance of the 
approximation by polynomials, the data of examples 
3.1 and 3.2 were evaluated with the following 
modification: values of 60 g and 150 g were 
eliminated as if they never were tested, in order to 
have lower number of tested nominal values. 
 
For the data of 3.1, table1 (except for 60 g and 150 
g), the fitting coefficients and the variance-
covariance matrix are, 
 
=a  

a0 =  -1.627 64 x 10
-5
 g 

a1 =  4.442 31 x 10
-6
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2
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For the data of 3.2, table 2 (except for 60 g and   
150 g), the fitting coefficients and the variance-
covariance matrix are, 
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a0 =  3.921 8 x 10
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 g 

a1 =  -7.812 6 x 10
-6
 

a2 = 2.000 7 x 10
-7
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-1
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Figure 7. Expanded uncertainties associated to the 

errors of the indications calculated by calibration 
(series 1) and by the approximation by polynomial 
(series 2) for data of table 1 (except values of 60 g 

and 150 g). 
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Figure 8. Expanded uncertainties associated to the 

errors of the indications calculated by calibration 
(series 1) and by the approximation by second order 

polynomial (series 2) for data of table 2 (except 
values of 60 g and 150 g). 

 
 
In both examples, the calculated errors from 
different approaches are quite similar to those 
values evaluated in 3.1 and 3.2, but regards to the 
uncertainty values there are some differences. The 
uncertainty values calculated by the polynomial 
function remain under the values of the uncertainties 
calculated in calibration, even when these results 
are slightly larger than if the tested values of 60 g 
and 150 g were included, see Figures 8 and 9. 
 
4.2. Extrapolation 
 
In order to evaluate the performance of the 
approximation by polynomials, the data of examples 
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3.1 and 3.2 were evaluated with the following 
modification: values of 0 g and 200 g were 
eliminated as if never were tested, in order to avoid 
the limits of the range of the instrument. 
 
For data of 3.1 (except for 0 g and 200 g), the fitting 
coefficients and variance-covariance matrix are: 
 
=a  

a0 =  1.293 03 x 10
-5
 g 

a1 =  3.974 15 x 10
-6
 

 

( ) =acov  

4.184 x 10
-8
 g
2
 -4.104 x 10

-10
 g 

-4.104 x 10
-10
 g 5.177 x 10

-12
 

 
For data of 3.2 (except for 0 g and 200 g), the fitting 
coefficients and the variance-covariance matrices 
are, 
 
=a  

a0 =  0.000 129 31 g 

a1 =  -5.692 x 10
-6
  

a2 = 1.6531 x 10
-7
 g
-1
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2
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Figure 9. Expanded uncertainties associated to the 

errors of the indications calculated in calibration 
(series 1) and by the approximation by polynomial of 
first order (series 2), for data of table 1 (except 0 g 

and 200 g). 
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Figure 10. Expanded uncertainties associated to the 

errors of the indications calculated in calibration 
(series 1) and by approximation of polynomial of 

second order (series 2), for data of table 2 (except 0 
g and 200 g). 

 
In both examples, similar than in section 4.1, the 
main differences of results are in the uncertainties 
associated to the error of indications. The 
extrapolation of the indication errors throws larger 
values of uncertainty for nominal values out of the 
calibration range, especially for the second order 
polynomial function, see Figures 10 and 11. 
 
5. PROPOSAL FOR THE CALCULATION OF A 
POLYNOMIAL FUNCTION FOR THE 
EVALUATION OF THE INDICATION ERRORS 
AND A POLYNOMIAL FUNCTION FOR THE 
ASSOCIATED UNCERTAINTIES 
 
Considering that the Monte Carlo’s method is one of 
the best methods to evaluate the uncertainty 
associated to the indication errors evaluated by a 
polynomial function, but as this method is not simple 
to apply by the final users, the authors recommend 
to the metrologist the following procedure for the 
evaluation of the fitting curve to describe errors of 
indications on calibration of measuring instruments 
(as a polynomial function) which include the 
information of Monte Carlo’s method for the 
uncertainty evaluation but expressed as a 
polynomial function too: 
 
a) To calibrate the instrument and to calculate 

the errors of indications and their associated 
uncertainties for discrete values (regular 
calibration), 

 
b) If it is possible, the nominal values tested at 

calibration should include the minimum and 
the maximum capacity or the measuring 
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range for the “normal” use of the instrument. 
The metrologist should keep in mind that 
more nominal values tested represent a lower 
uncertainty but higher cost of calibration, 

 
c) To find the fitting curve by the use of the 

weighing least squares method, (5). This 
fitting curve could be a first or second order 
polynomial, (4), 

 

d) To apply the chi-squared test 
2χ  in order to 

check if the polynomial selected fits properly, 
 
e) To estimate along the all measurement range 

of the instrument, include enough indication 
errors (at least ten) in the simulation by Monte 
Carlo’s method using the mathematical model 
of weighted least squares (5) for a polynomial 
function (4). The errors of indications found in 
calibration a), and their associated 
uncertainties should be taken as the means 
and as the standard uncertainties of the pdfs 
of the input quantities. If the nominal values 
tested could be considered as input quantities 
with variability (as it is assumed in the total 
least squares approach [6]), this situation 
should be modeled on the simulation, 

 
f) From the pdfs of the indication errors resulting 

from the simulation, a polynomial function 
should be calculated in order to have a 
function of the uncertainty of the indication 
errors in relation with the nominal values of 
the indications of the instrument. This function 
could be calculated by ordinary least squares. 
 

  ( ) SXXXa
T1T −

=′   (11) 

 
where a′  is a column vector of the fitting 

coefficients for the function of uncertainty 
(related to the indication error) and S  is the 

column vector of the standard deviations of 
the pdfs of the output quantities of the 
simulation. 

 
For the numerical examples of sections 3.1 and 3.2, 
the formulae to describe the indication errors and 
their standard uncertainties are: 
 
for the straight line function, 
 

( )

( ) 2974

66

10752.510954.710068.1

10318.410143.5

RREu

RRE

R

−−−

−−

×+×−×=

×+×−=
 

 
and for the second order polynomial function, 
 

( )

( )

5 6 7 2

4 8 9 2

11 3

6.882 10 8.437 10 1.989 10

1.079 10 5.377 10 2.226 10

             2.102 10

R

E R R R

u E R R

R

− − −

− − −

−

= × − × + ×

= × + × − ×

+ ×
 
With these formulae, the user can evaluate the 
indication error and the standard uncertainty related 
to any reading of the instrument in normal use. The 
standard uncertainty calculated by these functions 
should be combined with the rest of contributions 
that are involved in the specific mathematical model 
where is used the calibrated instrument. 
 
6.  CONCLUSIONS 
 
In this work the methods of approximation to 
describe errors in relation to indications mentioned 
in [1, 2] were analyzed, results from those methods 
were compared against values calculated by Monte 
Carlo’s simulation method. 
 
The uncertainty of the fitting coefficients of the 
polynomial will depend on the number of nominal 
values tested and on the selected approximation for 
the fitting of the indication errors. For the matrix 
model dealt in this paper to calculate approximation 
function to describe errors related to the indications, 

the fitting could be tested with χ
2
 test [1, 2]. 

 
Indeed it is not recommended to calculate errors of 
indications by an approximation function out of 
range of the nominal values tested; because of that, 
calibration should include the limits of the 
measurement range (Min and Max) of the instrument 
and as many as possible of nominal values to be 
tested. 
 
Results (indication errors) of numerical simulation by 
Monte Carlo’s method are practically the same than 
results calculated by the approximation by 
polynomials (2.1). 
 
The evaluation of the uncertainty for the straight line 
that crosses through zero approximation specified in 
[1, 2] does not consider the contribution of the 
uncertainty due to the assumption that a0 is zero, but 

this supposition has an associated uncertainty, 
which in this work was considered identical to the 
uncertainty of a single indication.  
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The evaluation of the uncertainty for the error of the 
reading in use by linear interpolation method 
recommended in [1, 2], formula (2), considers that 
the uncertainty of the readings in use will be 
described by a linear interpolation too, in similar way 
as the calculation of the errors, however if the 
uncertainty of the errors is calculated using the law 
of propagation of uncertainty [3] applied to the 
mathematical model (1), the arising uncertainty is 
lower than that estimated by (2). 
 
The closer approximation to the uncertainty 
evaluated by Monte Carlo’s method is that evaluated 
by the polynomial method, even when this 
calculation throws uncertainties values higher than 
those evaluated by numerical simulation method. 
 
A proposal for the calculation of the indication errors 
and their uncertainties by polynomials functions is 
presented in this paper, see chapter 5. 
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