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Abstract: Supplement 1 of the GUM provides examples on measurement uncertainty evaluation from the 
point of view of a Bayesian interpretation of the probability that is stronger than in the GUM itself, but it is not 
explicit about simulating methods for posterior probability density functions. In this document we point out that 
situation and present the Metropolis-Hastings simulation technique as an alternative to the sampling method 
used in the Supplement 1 of the GUM that can be easily applied to simulate posterior distributions.  Examples 
implemented in LabVIEW™ are provided to the reader.  
 
1. INTRODUCTION 
 
Supplement 1 to the GUM [1] provides examples on 
the evaluation of the measurement uncertainty by 
the propagation of distributions using a Monte Carlo 
Method and claims that all those evaluations are in 
agreement to the Bayesian theory of probability and 
can be used in practical situations.   
 
But in almost all examples the probability density 
functions (PDFs) related to the input quantities 

( )Ig iX i
|ξ  are assigned, their parameters are 

assumed to be known and the use of the likelihood 

related to the measurements{ }ix , { }( )Ixl iX i
,|x i , is 

not considered, and that is far from normal practice 
in the laboratory.   There is not information for 
practicioners for tackling the simulation of posteriori 
pdfs that are given by the product of a likelihood 
function and a prior distribution according to the 
Bayes’ theorem.   
 
In this document we explain how to combine a prior 
PDF with the likelihood through some examples and 
using a Monte Carlo method called Metropolis-
Hastings [2] implemented on LabVIEW™ 8.0 
software. 
 
2. BASIC PRINCIPLES  
 
For the determination of the measurement 
uncertainty of a quantity Y given by a measurement 

model ( )NXXfY ,...,1= , the  GUM Supplement 1 

proposes to evaluate the standard measurement 

uncertainty of Y  from 
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where ( )ηYg  
is the PDF of Y .  On the other hand 

( )ηYg  
is evaluated from the joint distribution of 

NXXY ,...,, 1 : 
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 (2), 

 
or after applying the multiplicative property of 
probabilities,
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If the condition ( ) 0,...,1 =− NXXfY  is imposed to 

equation (3) by means of Dirac’s Delta distribution, 

δ , then it becomes in the expression recommended 

in section 5.2, (the  “Markov formula”):  

 ( ) ( )( ) ( ) NNXXNY ddgfg
N

ξξξξξξηδη ...,...,,...,... 11,...,1 1∫ ∫
∞

∞−

∞

∞−

−=  (4) 

In particular, if all iX
 
are independent, equation (4) 

can be written as follows:  
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The evaluation of (4) can be done analytically for 
some simple measurement models with two or three 
variables, but for those models which are used in 
everyday applications or calibration laboratories, to 
find an analytical solution could be either very 
difficult or not possible and it is necessary to use 
Monte Carlo Methods that comprise a long variety of 
simulation techniques.  In particular, the Supplement 
1 of the GUM [1] proposes sampling from the 
inverse of the cumulative distribution in its Annex C.   
 
3. THE SUBJECT OF THIS PAPER 
 

According to section 6.2 of [1] the PDF 

( )NXX N
g ξξ ,...,1,...,1

 can be evaluated using the Bayes’ 

theorem: 
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where I  was added in order to represent any 
additional information available.  Then equation (6) 
can be re-written as: 
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And the normalization factor K is given by  
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Equations (6) and (7) are not explicit provided in the 
GUM Supplement 1, but are a clear consequence of 
the Bayes’ theorem.   
 
In the GUM Supplement 1 the PDFs of the input 

quantities ( )Ig iX i
|ξ  are assigned and their 

parameters are assumed to be known exactly; the 
examples do not consider the use of the likelihood 

related to the measurements { }( )Ixl iX i
,|x i , and [1] 

does not explain how to evaluate equation (6), which 
naturally arise when measurement data is also 
available.   

The only exception is when the t-distribution is used 
in example 9.5 in [1]. In that case, the t-distribution 
arises when the likelihood or sampling distribution is 
assumed to be normal, and non informative priors 
are assigned to the mean and variance of the 
quantity of interest. Also the t-distribution and the 
gamma distribution are mentioned in section 6.4 of 
[1] and their origins are explained in terms of the 
same likelihoods and priors.  
 
Probably this is due to the fact that it is not so 
immediate to find the cumulative distribution 
inverses for all posterior PDFs, by drawing samples 
from them. But there is a more versatile simulation 
technique that could be considered by metrology 
practitioners and that can handle this type of 
situations: the Metropolis-Hastings (M-H) algorithm.   
 
4. METROPOLIS-HASTINGS ALGORITHM 
 
The Metropolis-Hastings (M-H) algorithm appeared 
on 1953 [3] as a mathematical tool for the 
calculation of the solution of a problem related to 
statistical mechanics and many years latter 
statisticians found it to be very useful for the 
simulation of complicated probability distributions.  
Although advanced mathematical concepts like 
“Markov Chains” [2, 4] support the M-H simulation 
algorithm, its application is pretty simple in many 
cases and the M-H algorithm need only the 
conditions d) and e) stated in 5.10 of [1]. 
 

For the simulation of a PDF ( )ξXg  
it is necessary to 

specify a generating-jumping rule by a generating 

distribution ( )ttXX t
q ξξ |1|1 ++

 and a step size d .  This 

rule will provide information about how to generate a 

new value 1+tξ  when the previous value was tξ . 

Large d  values imply faster to get simulations (in 

the sense that the simulation region is quickly 
covered) lower accuracy, and sometimes non-
convergence of the simulation to the desired 

probability distribution, ( )ξXg .  A good selection of 

d  values depends on the relative scale of the 

problem and experimentation; this is a heuristic 
process.    
 
In this document we will use the uniform distribution 

( )1,0U , for the definition of the generating-jumping 

rule so it’s easy to compute and it may be available 
in many software.   Then, the generation and 
jumping rule is defined as:   
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thus, the M-H algorithm is as follows: 

1. Set 0=t  and an arbitrary value 0=tξ  

2. Generate a new value 1+tξ from   

( )ttXX tt
q ξξ |1|1 ++

 (when 0=t  the new value is 1ξ and 

is obtained from ( )01| |
01

ξξXXq ; if 1=t , 2ξ  
comes 

from ( )12| |
12

ξξXXq  , etc.)  

3. Decide to accept or reject the new value 1+tξ  

according to the following rule 
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Where,  
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In the case of the uniform distribution we have 

( ) ( )ttXXttXX tttt
qq ξξξξ || 1|1| 11 ++ ++

= , hence, 

( )
( )tX

tX

g

g
r

ξ
ξ 1+=        (12) 

4. Go back to step 2 in order to generate a new 
value from the last one and repeat this process M 

times up to reach the convergence for ( )Kg X ξ  

where K  is the frequency distribution of the sampled 

values tξ  (see Eq. 8).  This might take many 

iterations. 
 
The first example of M-H implementation is 
presented together with the normaldistribution.vi 
file; the routine implemented in this file simulates a 
normal distribution with known variance and mean.  
It is presented for a short heuristic discussion and to 
providing a general picture of the M-H method, it 
does not pretend neither to evaluate its convergence 
nor other properties.  The whole files referred into 
this paper can be downloaded from   
simulations.rar [5] (the password is 4628) and they 
are implemented in LabVIEW™ [6].  This software  
(version 8.0), has been chosen so because it is 
frequently available in many calibration laboratories 
and it is easy to apply without any previous 

programming experience.  LabVIEW™ programming 
interface is visual and it looks like a flow chart. It 
also provides a useful interface called “Front panel” 
that can be configured by the user.  Executable 
versions are available in the simulations.rar file. It 
is necessary previously to install the Run Time 
Engine 8.0 [7]. 
 
In Figure 1, a simulation of the Normal distribution 
with mean = 12 and variance = 1 N(12, 1), is 
presented. The visual code “block diagram”, of 
normaldistribution.vi, is presented.  The simulated 
numbers are generated according to the previous 
algorithm in the upper half of the block diagram.  
The lower half of the block diagram is related to the 
presentation of the results: the evaluation of the 
mean, variance, and the graphical representation 
(histogram, waveform chart and cumulative 
distribution).   
 
In Figure 2, the simulation results are found by 
running 3012 iterations. The mean of the simulated 
values is 11,14 and the variance is 8,32, the step 
size is 0,1 and the initial value is 0.  This is possible 
to see in the waveform chart graph how the 
simulation evolves from 0 to a value close to the 
mean.  In this case the number of iterations is not 
enough for obtaining the desired PDF, i.e. the shape 
of the cumulative distribution graph is quite far away 
from the characteristic “s” shape of the normal 
distribution.  The histogram graph shows a bi-modal 
distribution and the values from the left correspond 
to the first iterations.  In Figure 3, 65000 iterations 
are obtained from the same file, the mean of the 
simulated values is 11,96 and the variance is 1,25.  
The histogram and cumulative distribution graphs 
present the typical shape of the normal distribution.  
In the wave form chart we can see how the last 
iterations move around 12.  
 
In Figure 4 another simulation of N(12, 1) with 10000 
values is presented.  Now, the step size is 1 and the 
convergence was faster. The mean of simulated 
values is 12,01 and the variance is 1,03.  This is 
possible to see in the waveform chart graph that 
discrete values are simulated and the distance 
between them is determined by the step size. 
 
In this example, is easy to realize that this is not 
necessary to know the inverse of the cumulative 
density function when using the M-H algorithm; it is 
enough writing the analytic expression of the PDF. 
Its application is easy to extend for PDFs bigger 
than one dimension. 
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Fig. 1 Block diagram of normaldistribution.vi 

 

 
Fig. 2 Normal distribution 

simulation. 3012 iterations. Step 
size equal to 0,1  

 
Fig. 3 Normal distribution 

simulation. 65000 iterations. Step 
size equal to 0,1 

 
Fig. 4 Normal distribution 

simulation. 10000 iterations. Step 
size equal to 1 
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This is necessary to have in mind that the searching 
convergence process from the simulation values 
may tend to stop suddenly or unexpectively around 
certain values other than the true value(s), specially 
in the simulation of PDFs with more than one 
maximum, for example during the simulation of a 
bivariated normal distribution.  
 
In order to avoid that problem, a tempering 
simulation technique based on M-H can be applied 
by a pumping technique [8]. Even though this if 
outside of the interests of this paper an example is 
provided to the reader from the  
simulacionbivariadatempering.vi file, which 
corresponds to the simulation of the sum of two 
bivariated normal PDFs and works with the sub-vi  
pasosimulacionmultinormal.vi file.  Correlated 
and uncorrelated components are considered for 
each variable. 
 
The concept of randomness, which is not Bayesian, 
has been created to deal with a lack of information 
or ignorance from the point of view of the frecuentist 
concept of probability, e.g.: “random error”. Even 
though LabVIEW™ applies the Wichmann-Hill 
generator for the uniform distribution, described in 
[9] and superseded many years later [10], its cycle 
length (~10

12
) is still good enough for our purposes 

and since true random generators have not been 
applied yet, they seem to behave randomly. 
 
Reference [1] supports the use of the Bayes 
theorem, but surprisingly mentions the concept of 
randomness along its pages, particularly in section 
3, “Terms and definitions”.  Far from considering that 
situation as a problem or error, the authors’ opinion 
is that this inconsistency, widely founded in 
recognized references, is a symptom of the 
evolution of the nature of the concepts in metrology. 
In the original version of 1995 [11] the Bayesian 
concepts were latent but in [1] they are mentioned 
along many sections of the document; this shows 
that the metrology community is moving towards the 
Bayesian interpretation of probability. 
 
 
5. POSTERIOR SIMULATION WITH M-H  
 
A posterior PDF is given by the product of a 
likelihood function and a prior PDF and its simulation 
by M-H is done in the same way as in previous 
examples so it is just a PDF.  The only difference is 
that it is necessary to define the prior PDF for each 
case according to the available information and 
sometimes measurements are available for defining 

the likelihood function. The prior PDF assignment 
can be done by applying the principle of maximum 
entropy (PME) as mentioned in 6.3 of [1].  The 
following examples illustrate this idea.  Because of 
space limitations it is not possible to provide a large 
discussion for all examples, but their 
implementations are available in the vi files for the 
reader.   We concentrate our discussion in the first 
and fourth example. 
 
 
5.1. First example 
 
As a first example we will consider the case where 
the only prior information available for the quantities 

X  (location parameter) and
2Σ  (scale parameter) is 

that their values are within the intervals [ ]ba,  
and [ ]dc,  respectively ( 0, ≥dc ).  A set of normally 

distributed observations is available, { }( )IlX ,,|x 2σξ , 

and non-informative priors are assigned to X and 
2Σ .  X  and 

2Σ  are independent  with prior 

distributions represented by ( )Ig IX || ξ and 

( )Ig
I

|
2

|2
σ

Σ
.  From the Bayes theorem (see equation 

(6)) and the PME is is obtained: 
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∑ −
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ξ
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(14)  

)(ξH  is the Heaviside Step Function [12], which is 

very useful for the construction of polygonal shape 
distributions, in this case, a uniform distribution.  The 

factors  
ab −
1

 and 
( )cd /ln

1
can be eliminated, so 

these are only normalization constants of  

( )Ig IX || ξ and ( )Ig
I

|
2

|2
σ

Σ
 on the other hand cancel 

in the evaluation of r , equations (11 and 12).  
 
 

The sum ( )∑ −
n

1

2
ix ξ can be re-written as 

( ) ( )22
x1 ξ−+− nsn , where  
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mean of the observations.  
 
Thus:  
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(15) 

 
The file sim1.vi provides a simulation implemented 
using M-H.  In Figures 5 and 6 show simulations for 

X  andΣ  using 0=a , 12=b , 1,0=c  , 5=d , 2,13x = , 

1,702 =s  and 5n =  (The values of  x  and  2s can be 

obtained from the set of numbers {12, 12, 13, 14, 

15}).   The initial value for the mean is oξ  
= 6 and 

the initial value for the variance is 2
oσ  = 3, the step 

size is 0,1 for ξ and σ .   

 
For metrology purposes we are interested in the 

simulation of X  (Figure 5)  and its standard 
deviation which is the standard uncertainty; Σ is a 
nuisance parameter (Figure 6).  
 
Table 1 shows how the range of variation of the 
simulation results of the parameters of interest get 
smaller with a larger iteration number that may 
change according to the step size.  

 
Table 1. Results of 20 trials with different number of iterations 

Number of 
iterations 

Number 
of trials 

Mean of the 
trials means 

Mean of the trials 
standard deviations 

Range of variation 
of trials means 

Range of variation of 
trials standard deviations 

10000 5 11,44 0,94 0,37 0,27 

30000 5 11,51 0,70 0,10 0,19 

100000 5 11,56 0,63 0,09 0,09 

300000 5 11,61 0,49 0,02 0,07 

 
 
 

 
Fig. 5 Simulation of the posterior pdf of X  

 
Fig. 6 Simulation of the posterior pdf  of Σ  

 
 

5.2. Second example 
 

In this example the prior information for X says that 

is located in the interval ( )∞,0 and it’s best estimate 

is equal to pµ . 
2Σ is located in the interval [ ]dc, .   

 
A set of normally distributed observations are 

available, { }( )IlX ,,|x 2σξ .   A non-informative prior  

is assigned to 
2Σ .  From the Bayes theorem and the 

PME:  
     

{ } { }( ) ( ) ( )

( ) ( ) ( )( ) e

e
1

    ,x|,

22
-

x1
2

1
-

2n

2

,x|,

22

2

2

dHcHH

Ig

p

nsn

IX

−−−×

×





 −+−

+Σ

σσξ

σ
ασξ

µ
ξ

ξ
σ

(16) 

 
See file sim2.vi for the implementation. 
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5.3 Third example 
 
In this example we consider a model with two 

variables: 21 XXY += . Simulated values for each 

variable are drawn using M-H at the same time.   
Then each pair of values is used to evaluate the 
measurement model as many times as defined by 
the user and a histogram is constructed with the 
results. In the file is sim3.vi the posterior PDF of the 
first example was assigned to each variable; in 
sim4.vi the posterior PDF of the first example was 

assigned to 1X  
and the posterior of the second 

example was assigned to 2X . 

 
5.4. Fourth  example 
 
As suggested by one referee we included an 
example using a measurement model more 
complicated than the previous one in order to show 
an application closer to metrology practitioners’ 
reality.  In this case we choose the measurement 

model for the air density, aρ , proposed in equation 

(E.3-1) of [13], and we will consider the information 
related to measurement instruments calibration 
results and resolution.  The vi file is airdensity.vi 
and requires the use of the graphics.vi file as a 
subroutine.  
 

The measurement model for aρ  (in kg/m
3
) is:  

 

    

( )
( )

( ) ( )

( ) f
TT

CDT
HH

TT

pp
a

CDT

eCCH

CDT

CDP

TT

δρ
δ

δ

δ

δ
ρ

δ

+
+++

×++
−

+
+++

++
=

++

15,273

009,0

15,273

0034848,0

0612,0
(17) 

Where,

 

P is the atmospheric pressure [Pa],   
T is the temperature [ºC], and  
H is the relative humidity [%].   
 
P, T, and H are determined by measurements and 
prior information.  The posterior PDF of the first 
example is assigned to each one. These are the 
only variables with associated likelihoods. 
δDP, δDH, and δDT are corrections for compensating 

the error due to the finite resolutions of the 
instruments used for the measurements of pressure, 
humidity, and temperature, respectively.  A uniform 
distribution, centered at cero, is assigned to each 
one. The width of each uniform distribution is equal 
to the resolution of the instrument.   

CP, CH, and CT are the corrections reported in the 
calibration certificates of the instruments used for 
the measurements of pressure, humidity, and 
temperature, respectively.  This is assumed that the 
condition of clause 6.4.9.8 of GUM Supplement 1 [1] 
applies, i.e. normal distributions are used for CP, CH, 
and CT. δρf is the correction for compensating the 

error of the air density equation.  Its mean value is 
equal to 0 and its standard uncertainty is equal to 

1x10
-4

aρ ; for the standard uncertainty we will make 

the approximation 1x10
-4 
kg/m

3 
so aρ is a simulated 

value. In OIML R111-1:2004 [13] there is not 
information about the probability density function of 

fδρ , but we will assume it to be normal, we know its 

mean value (0) and its standard uncertainty.   
 
Figure 7 shows the histogram of 50000 simulations 
done with the conditions described in Table 2, which 
are the default conditions that the reader will find 
when opening the vi file (except the values for the 
likelihood function that have to be introduced by 
hand).  The PDF of the density is skewed because 
the observed temperature values are outside of the 
temperature prior PDF (smaller).   The mean value 
obtained was 1,129 89 kg/m

3 
with a standard 

uncertainty equal to 0,000 85 kg/m
3
 

 

 
Fig. 7 Simulation of the posterior pdf of the air 
density.  
 
The posterior PDF resembles the normal distribution 
due to the contributions of the many variables that 
participate in this model and the central limit 
theorem. But it is not normal according to a 
Kolmogorov-Smirnov test [14] done on the last 
48000 simulated values (the first 2000 were not 
considered so the first simulated values oscillate 
more than the last); it is little skewed to the right.   
 
The posterior PDF of T  contributes to this lack of 
symmetry so it is not symmetric and the temperature 
has a high effect on the air density.  The posterior 
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PDF of T  is not symmetric because the values used 
to construct the likelihood are higher or equal to the 
lowest values of the prior PDF of T .  
From the cumulative frequency of the simulated 
values it is possible to determine a coverage interval 
with a coverage probability equal to 95%, for 

example  using as limits the 2,5% and 97,5% 
percentiles, we get [1,1282 , 1,1316].   
In order to assure the convergence it would be 
possible to consider the evaluation of the results of 
running simultaneous simulations. 

  
Table 2. Simulation conditions of the posterior PDF of the air density 

Variable/ 
Unit 

Likelihood  Measured 
values 

Prior PDF of 
the mean  
 

Prior PDF of the 
variance  

Initial value of 
the mean 
simulation / 
step 

Initial value of 
the variance 
simulation /  
step 

T  /°C 
 

Normal 20,5; 
20,5;20,9 

U(20,00 , 20,50) ( )( )1,05ln1 2σ  20,5 / 0,05 3 / 0,05 

H / hr% Normal 46; 48;49 U(45, 50) ( )( )1,05ln1 2σ  47 / 0,1 3 / 0,1 

P / Pa Normal 95100; 
95150 

U(94000, 98000) ( )( )1,010ln1 42σ  95100 / 5 100 / 10 

TDδ /°C -- -- U(-0,05, 0,05) -- -0,05 /no applies
 

-- 

HDδ / hr% -- -- U(-0,05, 0,05) -- -0,05 /no applies -- 

PDδ / Pa -- -- U(-50, 50) -- -50 / no applies -- 

TC /°C -- -- N(0, 0,05
2
) -- 0,01 / 0,01 -- 

HC / hr% -- -- N(0, 1
2
) -- 0,1 / 0,01 -- 

PC / Pa -- -- N(45, 50
2
) -- 0,02 / 3 -- 

fδρ / kg/m
3
 -- -- N(0, 0,001

2
) -- 0 / 0,00002 -- 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8  Reformulated scheme for the Monte Carlo method. 
 
6. FINAL REMARKS 
 
JCGM 104:2009 (Figure 8) [11] gives a 
representation of the measurement uncertainty 
evaluation procedure using a Monte Carlo Method 
that might be improved by.the scheme from Figure 8 

which shows an improved version taking on account 
the concepts already discussed. 
 
7. CONCLUSIONS 
 

 Prior probability 
distributions for 
the Xi 

Likelihoods 
(measurement 
data) 

M draws of  X1,…XN from the posterior probability distributions of Xi  

Measurement 
function 
Y=f(X1,..XN) 

Inputs Number M of 
Monte Carlo 
trials for Y  and 
Xi  simulation  

Coverage 
probability 

Simulation 
algorithm and 
conditions 

M measurement function values 
corresponding to these draws  

Output
s 

Estimate y of Y and associated 

standard uncertainty u(y)  

Sorted measurement 
function values: discrete 
representation of the 
distribution function for Y  

Coverage interval for Y  



Simposio de Metrología 2010  27 al 29 de Octubre 
 

Centro Nacional de Metrología                                                                                                     SM2010-S5D-3 
9 

In this paper the M-H algorithm was presented as an 
alternative to the Monte Carlo Method proposed in 
the Supplement 1 of GUM which is based on 
sampling from the cumulative PDF.   
 
The M-H algorithm was used to explain how to 
simulate PDFs, particularly posterior PDFs (given a 
prior PDF and a likelihood functions), and it might be 
useful by the metrology community.  
 
Further research is needed to determine the 
optimum simulation conditions (step sizes, initial 
values, number of iterations, among others) for each 
measurement model.   
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