See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/242649956

COMPARACIÓN NACIONAL EN PRESIÓN RELATIVA NEUMÁTICA HASTA 2,1 MPa

		•	
Λ	rt		םו
\boldsymbol{n}	ıu		ľ

READS

16

9 authors, including:

Jorge C. Torres-Guzman Centro Nacional de Metrologia

76 PUBLICATIONS 119 CITATIONS

SEE PROFILE

COMPARACIÓN NACIONAL EN PRESIÓN RELATIVA NEUMÁTICA HASTA 2,1 MPa

Luis A. Santander Romero / Jorge C. Torres Guzmán. Centro Nacional de Metrología (CENAM).

INTRODUCCIÓN

Con el propósito de establecer los niveles de concordancia en la realización de la magnitud de presión y la asignación de incertidumbres asociada a su medición, la División de Metrología de Fuerza y Presión del CENAM convocó a todos los laboratorios secundarios mexicanos que pueden realizar la magnitud de presión relativa neumática dentro del alcance de hasta 2,1 MPa, a esta comparación nacional.

INFORMACIÓN GENERAL

1.1 PATRÓN DE COMPARACIÓN

El patrón de comparación utilizado fue un manómetro digital con un alcance máximo de medición de 2,1 MPa teniendo una exactitud de 0,01 % E. T. Este manómetro fue prestado para la comparación por la empresa Paroscientific Inc. La tabla 1 muestra las características del manómetro digital utilizado para la comparación.

Tipo de Transductor:	Oscilador de cuarzo
Alcance de medición:	2 100 kPa
Unidad de medición:	kPa
Resolución:	0,001 kPa
Clase de exactitud:	0,01 % E.T.
Marca del transductor:	Paroscientific
Modelo:	785-400A-10K
Numero de serie:	1168
Fluido de trabajo:	Gas seco

Tabla 1. Patrón de comparación.

1.2 LABORATORIOS PARTICIPANTES

Los laboratorios participantes, mostrados en la tabla 2, utilizaron los instrumentos que tienen como patrones para dar el servicio en el alcance de medición propuesto para la comparación.

Laboratorio	Estado	Persona a cargo		
CALPRO	Edo. de Mex.	Fabiola Muñoz Roldan		
LAMEVI	Edo. de Mex.	Marco Antonio Roa		
PROFETEC	Edo. de Mex.	Gabriela Mata Alanis		
CALTECHNIX	México, D.F.	Ana Lilia Hernández		
CVC de México	México, D.F.	Angelica Vega		
IMP	México, D.F.	Andrés I. García De la Rosa		
Magdalena Pacheco	México, D.F.	Ma. Magdalena Pacheco		
INYMET	México, D.F.	Marco A. Cabrera Carrasco		
NYSCO de México	México, D.F.	Rafael Chargoy		
SICAMET	Edo. de Mex.	María de los Dolores Cerón		
ASIC	Edo. de Mex.	Cesar Martínez Rivera		
CIDESI	Querétaro	Alfredo Sánchez		
LAPEM	Guanajuato	David Jacobo Obregón		
METAS	Jalisco	Víctor Manuel Aranda		
CIATEQ	Aguascalientes	Alejandro Medrano Montoya		
TAMOXLAB	Tamaulipas	José Luis Ríos Piñeiro		
METROLAB	Nuevo León	Ervey López		
MYPSA	Sonora	Roberto Hurtado Hurtado		
METROTÉCNIA	Edo. de Mex.	Francisco Mendiola		
SIMCA	México, D.F.	Víctor Manuel Díaz		

Tabla 2. Laboratorios participantes.

1.3 PROGRAMA DE LA COMPARACIÓN

La comparación se llevo a cabo en tres rondas de comparación, cada ronda incluyo mediciones iniciales y finales del laboratorio piloto (CENAM). Las rondas se realizaron buscando la mejor y más fácil movilización del patrón de comparación.

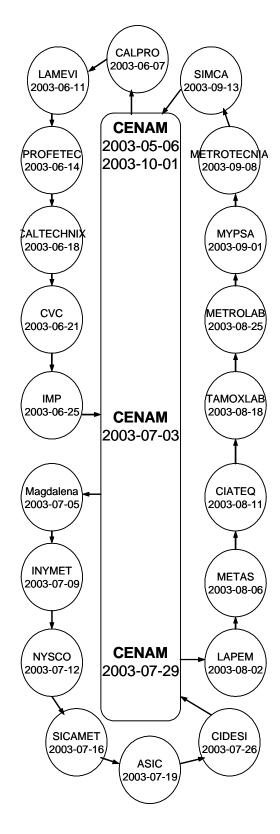
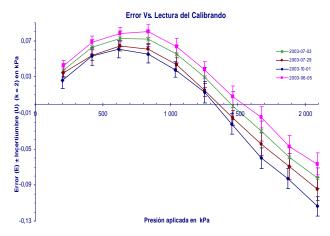



Figura 1. Rondas de comparación.

2. RESULTADOS

2.1 CARACTERIZACIÓN DEL PATRÓN DE COMPARACIÓN

La gráfica 1 muestra el estudio realizado por el laboratorio piloto (CENAM) del comportamiento, deriva e incertidumbre, del patrón de comparación. Los resultados son expresados en términos de la presión real aplicada contra el error del patrón de comparación. Las mediciones se realizaron al inicio y al final de cada ronda.

Gráfica 1. Calibraciones del laboratorio piloto.

En la tabla 3 se incluyen los datos utilizados.

Presión	2003-06-05		- 1	2003-07-03		2003-07-29	2003-10-01		
kPa	Error (E)	Incertidumbre (U)	Error (E)	Error (E) Incertidumbre (U) E		Error (E) Incertidumbre (U)		Incertidumbre (U)	
210	0,042	± 0,006	0,037	± 0,008	0,035	± 0,004	0,026	±0,009	
420	0,068	± 0,007	0,063	± 0,008	0,054	± 0,006	0,053	±0,010	
630	0,078	± 0,007	0,072	±0,009	0,064	± 0,006	0,061	±0,010	
840	0,081	± 0,007	0,072	± 0,008	0,061	± 0,006	0,056	±0,010	
1050	0,064	± 0,009	0,055	± 0,010	0,043	± 0,008	0,038	±0,009	
1260	0,038	± 0,009	0,030	± 0,011	0,015	± 0,007	0,013	±0,012	
1470	0,008	± 0,012	-0,002	± 0,015	-0,015	± 0,009	-0,022	±0,012	
1680	-0,015	± 0,012	-0,030	± 0,011	-0,045	± 0,013	-0,060	± 0,012	
1890	-0,047	± 0,013	-0,059	± 0,011	-0,069	± 0,014	-0,083	± 0,011	
2100	-0,067	± 0,012	-0,082	± 0,011	-0,094	± 0,013	-0,114	±0,011	

Tabla 3. Resultados del comportamiento del patrón de comparación.

2.2 RESULTADOS DE LOS PARTICIPANTES

Los resultados encontrados por los laboratorios participantes, del error promedio de sus mediciones y de incertidumbre de medición asociada para los puntos de presión nominal, se muestran en las tablas 4 y 5, respectivamente.

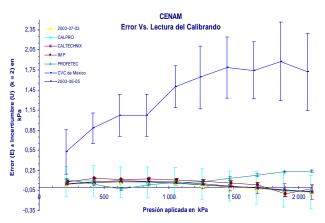

Laboratorio	210	420	630	840	1 050	1 260	1 470	1 680	1 890	2 100
CALPRO	0,085	0,094	0,076	0,071	0,065	0,049	0,017	-0,013	-0,052	-0,074
LAMEVI										
PROFETEC	0,119	0,041	-0,025	0,038	0,071	0,081	0,132	0,179	0,227	0,237
CALTECHNIX	0,054	0,081	0,094	0,089	0,075	0,049	0,019	-0,014	-0,041	-0,070
CVC de México	0,525	0,882	1,070	1,070	1,500	1,638	1,784	1,745	1,878	1,719
IMP	0,083	0,134	0,111	0,122	0,103	0,085	0,061	0,030	-0,102	-0,019
Magdalena Pacheco	-0,160	-0,240	-0,370	-0,430						
INYMET	0,028	0,048	0,040	0,162	0,163	0,158	0,140	0,117	0,095	0,079
NYSCO de México	-0,075	0,010	0,008	0,011	-0,100	-0,070	-0,069	-0,144	-0,189	-0,299
SICAMET	0,140	0,140	0,150	0,130	0,170	0,130	0,180	0,230	0,240	0,200
ASIC	0,047	-0,025	-0,101	-0,059	-0,155	-0,211	-0,172	-0,150	-0,123	-0,186
CIDESI	0,019	0,066	0,024	65,000	0,040	0,054	0,035	0,028	-0,012	0,022
LAPEM	0,040	0,074	0,093	0,101	0,057	0,038	0,009	-0,016	-0,039	-0,071
METAS	0,048	0,041	0,030	0,020	-0,012	-0,037	-0,070	-0,113	-0,148	-0,154
CIATEQ	-0,326	0,241	0,484	0,143	0,416	-0,705	-0,629	-0,795	-1,268	-1,462
TAMOXLAB	0,154	0,288	0,366	0,538	0,598	0,736	0,771	0,894	0,971	1,148
METROLAB										
MYPSA	0,096	-0,269	-0,392	-0,430	-0,427	-0,382	-0,592	-0,675	-0,757	-1,050
METROTÉCNIA	0,020	0,055	0,066	0,065	0,079	0,054	0,033	0,011	0,003	-0,020
SIMCA	0,093	0,014	0,061	0,079	-0,081	0,016	-0,125	0,016	-0,101	-0,063

Tabla 4. Error promedio, en kPa, para cada punto de medición de los laboratorios participantes.

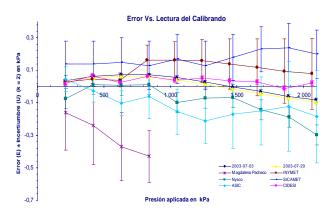
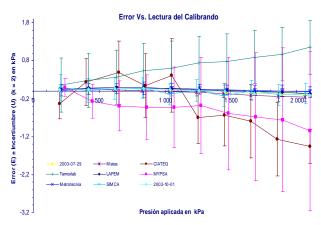

r				_				_	_	_
Laboratorio	210	420	630	840	1 050	1 260	1 470	1 680	1 890	2 100
CALPRO	0,277	0,226	0,226	0,229	0,227	0,226	0,226	0,240	0,244	0,248
LAMEVI										
PROFETEC	0,012	0,013	0,018	0,011	0,015	0,023	0,027	0,023	0,014	0,019
CALTECHNIX	0,012	0,022	0,033	0,043	0,054	0,064	0,075	0,085	0,096	0,106
CVC de México	0,327	0,228	0,309	0,314	0,314	0,470	0,456	0,425	0,584	0,576
IMP	0,007	0,011	0,015	0,020	0,025	0,030	0,035	0,040	0,045	0,050
Magdalena Pacheco	0,230	0,240	0,210	0,160						
INYMET	0,016	0,029	0,043	0,095	0,112	0,133	0,155	0,176	0,198	0,219
NYSCO de México	0,062	0,062	0,062	0,062	0,062	0,062	0,062	0,062	0,062	0,062
SICAMET	0,140	0,140	0,150	0,150	0,150	0,150	0,140	0,140	0,150	0,150
ASIC	0,075	0,071	0,075	0,139	0,139	0,138	0,207	0,209	0,276	0,282
CIDESI	0,013	0,013	0,013	0,013	0,014	0,014	0,015	0,015	0,016	0,016
LAPEM	0,016	0,027	0,036	0,046	0,058	0,066	0,078	0,086	0,097	0,108
METAS	0,017	0,029	0,042	0,057	0,070	0,084	0,097	0,111	0,123	0,137
CIATEQ	0,404	0,621	0,833	0,833	0,968	0,667	0,812	0,971	0,962	0,441
TAMOXLAB	0,710	0,710	0,710	0,710	0,720	0,710	0,730	0,710	0,710	0,710
METROLAB										
MYPSA	0,271	0,448	0,654	0,861	1,067	1,274	1,480	1,686	1,893	2,099
METROTÉCNIA	0,147	0,147	0,126	0,168	0,126	0,126	0,126	0,126	0,147	0,126
SIMCA	0,342	0,316	0,286	0,276	0,277	0,282	0,285	0,276	0,276	0,276

Tabla 5. Incertidumbre de medición (± U), en kPa, para cada punto de medición de los laboratorios.


Las gráficas 2, 3 y 4 presentan los resultados gráficamente del error (E) e incertidumbre (± U) obtenidos por los participantes. Debido a la gran cantidad de participantes se muestran para cada ronda de comparación.

Gráfica 2. Error (E) e incertidumbre (\pm U) de los laboratorios participantes en la 1^a ronda.

Gráfica 3. Error (E) e incertidumbre (\pm U) de los laboratorios participantes en la 2^a ronda.

Gráfica 4. Error (E) e incertidumbre (\pm U) de los laboratorios participantes en la 3^a ronda.

VALORES DE REFERENCIA

Los valores con los cuales se comparan los resultados obtenidos por los laboratorios participantes se denominan valores de referencia y deben ser el error e incertidumbre, E_{ref} y U_{ref} . Para esta comparación el valor de referencia para el error es:

$$E_{ref_i} = \frac{\sum E_{i,j}}{4} \tag{1}$$

Donde:

 E_{ref_i} es el error de referencia en el i-ésimo punto de medición.

 $E_{i,j}$ es el error en el i-ésimo punto de medición en la j-ésima medición realizada por el laboratorio piloto.

La definición del valor de referencia para la incertidumbre se realizó de la siguiente manera:

$$U_{ref_i} = \sqrt{\left(\frac{\sum U_{i,j}}{4}\right)^2 + U_{der}^2}$$
 (2)

Donde:

 U_{ref_i} es la incertidumbre de referencia para el iésimo punto de medición.

 $U_{i,j}$ es la incertidumbre del i-ésimo punto en la jésima medición realizada por el laboratorio piloto.

 U_{der} es la desviación estándar de la media de los $E_{i,j}$.

4. ANÁLISIS DE RESULTADOS

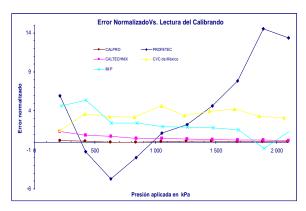
Los resultados obtenidos por los laboratorios se analizaron por medio del criterio de error normalizado (E_n) . El error normalizado se utiliza como medio de análisis de compatibilidad de resultados de mediciones entre laboratorios y se ha empleado en diversas comparaciones tanto nacionales como internacionales. El cálculo del error normalizado utilizado para esta comparación se define en la ecuación 3.

$$E_{n_{lab_i}} = \frac{E_{lab_i} + E_{ref_i}}{\sqrt{U_{lab_i}^2 + U_{ref_i}^2}}$$
(3)

Donde:

 $E_{n_{lab_i}}$ es el error normalizado del laboratorio en el i-ésimo punto de medición.

 E_{lab_i} es el error del laboratorio en el i-ésimo punto de medición.


 $U_{{\it lab}_i}$ es la incertidumbre de medición del laboratorio en el i-ésimo punto.

La siguiente tabla muestra el conjunto de los errores normalizados E_n de todos los participantes para cada punto de medición.

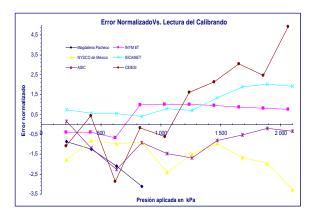
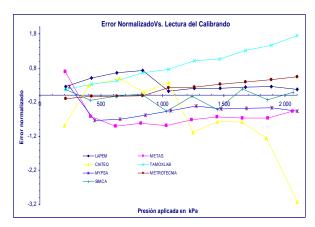

Laboratorio	210	420	630	840	1 050	1 260	1 470	1 680	1 890	2 100
CALPRO	0,22	0,15	0,03	0,02	0,07	0,11	0,11	0,10	0,05	0,06
LAMEVI										
PROFETEC	5,91	-1,20	-4,70	-2,00	1,14	2,22	4,62	7,82	14,53	13,36
CALTECHNIX	1,38	0,91	0,75	0,49	0,46	0,39	0,35	0,27	0,24	0,18
CVC de México	1,50	3,60	3,24	3,19	4,61	3,43	3,93	4,19	3,33	3,14
IMP	4,65	5,36	2,43	2,45	1,95	1,90	1,83	1,57	-0,79	1,34
Magdalena Pacheco	-0,85	1,25	2,09	3,10						
INYMET	-0,40	-0,40	-0,66	1,00	1,00	1,01	0,95	0,87	0,81	0,77
NYSCO de México	-1,76	-0,79	-0,97	-0,90	-2,39	-1,49	-0,96	-1,67	-1,95	-3,28
SICAMET	0,75	0,57	0,54	0,42	0,80	0,70	1,34	1,90	2,02	1,92
ASIC	0,16	-1,18	-2,25	-0,91	-1,47	-1,70	-0,79	-0,54	-0,21	-0,34
CIDESI	-1,08	0,44	-2,86	-0,16	-0,61	1,62	2,15	3,04	2,46	4,93
LAPEM	0,26	0,52	0,65	0,72	0,13	0,20	0,21	0,24	0,26	0,17
METAS	0,70	-0,62	-0,91	-0,82	-0,88	-0,72	-0,63	-0,67	-0,67	-0,47
CIATEQ	-0,89	0,29	0,50	0,09	0,38	-1,09	-0,76	-0,78	-1,25	-3,11
TAMOXLAB	0,17	0,32	0,42	0,66	0,76	1,00	1,07	1,31	1,46	1,74
METROLAB										
MYPSA	0,25	-0,73	-0,71	-0,58	-0,45	-0,32	-0,39	-0,38	-0,37	-0,46
METROTÉCNIA	-0,10	-0,03	-0,02	-0,01	0,23	0,24	0,32	0,38	0,46	0,55
SIMCA	0,17	-0,14	-0,03	0,04	-0,47	-0,03	-0,41	0,19	-0,01	0,09

Tabla 6. Error normalizado de los laboratorios participantes.


Las gráficas 5, 6 y 7 muestran esquemáticamente el error normalizado de los laboratorios participantes para cada ronda de comparación.

Gráfica 5. Curvas de error normalizado para los laboratorios participantes en la primera ronda.

Gráfica 6. Curvas de error normalizado para los laboratorios participantes en la segunda ronda.

Gráfica 7. Curvas de error normalizado para los laboratorios participantes en la tercera ronda.

5. CONCLUSIONES

El estudio realizado para determinar la deriva del patrón de comparación resultó en una disminución de la lectura de hasta 0,047 kPa que representa un 0,002 % E. T. del instrumento, por lo que se concluye que el instrumento fue adecuado para la comparación.

Los resultados permitirán que algunos participantes identifiquen y realicen

oportunidades de mejora asociadas con sus patrones y procedimientos de calibración.

De los resultados obtenidos, se puede observar que existen algunos laboratorios consideran los errores de medición su utilizado instrumento como patrón. Adicionalmente, se observa que algunos laboratorios al estimar la incertidumbre de medición de su sistema de calibración, sólo involucran la incertidumbre de calibración del instrumento que utilizan como patrón considerar todo el sistema.

Los resultados de esta comparación representan la capacidad de medición de los laboratorios con sus respectivos instrumentos de medición utilizados como patrones de medición y no un indicativo de la calidad de los servicios metrológicos que realizan los laboratorios, estén o no acreditados.

Se recomienda que los laboratorios participantes tomen en cuenta los resultados de esta comparación para mejorar sus procedimientos de calibración y evaluación de incertidumbres con el objetivo de disminuir las discrepancias de los resultados obtenidos entre ellos.

AGRADECIMIENTOS

Agradecemos al Ing. Fernando Hernández Cervantes representante en México de la compañía Paroscientific, Inc., por la disposición de facilitar el equipo que se utilizó como patrón de comparación.

Al T. S. U. Sinuhé Zuñiga González del CENAM por su colaboración en la calibración y caracterización del patrón de comparación.

Finalmente, agradecemos a todos los laboratorios participantes por el esfuerzo y dedicación realizados para llevar a cabo esta comparación.

REFERENCIAS

- [1] Torres Guzmán J. C., Soriano Cardona J. B., Jõger J., Pressure Standards Comparison between Germany and Mexico (Primary and Secondary Laboratories). NCSL International, Workshop and Symposium 2002, 6E Pressure III. San Diego, USA. Agosto, 2002.
- [2] Calderón R. Idrovo, Neira Catalina, Torres Guzmán J. C., Comparación de patrones de presión en el SIM/ANDIMET; Simposio de metrología 2002.
- [3] Torres Guzmán J. C., Guía y Lineamientos Generales para Comparaciones de Patrones de Medición, Memorias del Segundo Congreso Internacional Metrocal. Concepción, Chile. Abril 2001.
- [4] T. J. Quinn. Guidelines for key comparisons carried out by Consultive Committees. November. CIPM, BIPM. 1997.
- [5] Ley Federal sobre Metrología y normalización. México, 1999.