First steps towards the development of a digital twin.

Aldo adrián García González M4DT Agile Projects • <u></u> Metrology for Digital Transformation PTB S

CENTRO NACIONAL DE METROLOGÍA

Content

Introduction & Definition

" Its a virtual representation employed to understand and foretell the behavior of its physical equivalent"

DT at health

DT modelling for vaccine manufacturing[1] Digital Twin strategy in the pharmaceutical industry- https://www.infosys.com/insights/iot/documents/building-digital-twin.pdf

DT Strategy to Stabilize Ventilator Demand Amidst Pandemic

Image Lungs and créate 3D model

₩

Run Sims of blood And Oxygen Flow Train AI with Simulation Data Predict Ventilation Requiriments

BreathEasy project- https://www.enterpriseai.news/2020/04/15/onscale-launches-project-breatheasy/

Update Digital Twin

Potential of the DT

3D Representation

Visualization

Data Model

Model Syncrhronization

Simulation

Document Manager

Model

Connected analytics

METHODOLOGY : Vibration analysis system for farm tractor differential

Metrological projects are focused in the develop of systems that adapts to the costumer needs, in this case a vibration analysis system test cell was developed to measure the "health" of the mechanism inside of a tractor differential in a production line

Important aspects of the proyect:

Vibration analysis system for farm tractor differential

Creation of a Line for Design and Manufacture of Equipment for Functional Testing of Automotive Transmissions.

- One of the most fruitful avenues for innovation in metrology is when integrating measurement technology into direct industrial application equipment.
- Online functional and dynamic measurement is fundamental to smart manufacturing systems (Industry 4.0 & Digital Twins).
- The measurement of functional parameters of manufactured systems poses complex challenges due to the combination of variables involved.
- This article shows a successful example of systems integration for measurement of this type, achieved by the institutional collaboration with stakeholders.
- It is hoped that examples such as this one will open the way for the development of an integration and instrumentation industry at SIM.

Echeverria – Villagomez, J.S, Zambrano, L, etal. Metrology Investment Porjectsfor process effectiveness. NCSL, Tx, USA 2015

Know and then undestand the needs:

Vibration analysis system for farm tractor differential

The client

- Manufactures and assembles powertrain differential mechanisms for tractors.
- All powertrain components combine material (strength, hardness, weight...), dimensional (length, diameters, complex shapes...) and functional requirements.
- Among the functional requirements of a differential gearbox are:
 - Pinion and Gear interaction.
 - Misalignment
 - Bearings.
 - Backlash.
 - Torque or residual friction torque.
- The Customer requires, at the end of its assembly line, a work station that allows to measure the previous parameters and others coming from vibrations inside the mechanism, at 100% of its production, in a dynamic way, and to determine if the differential passes or does not pass according to a study made to the different models.
- M2M communication

https://www.grainews.ca/machinery-shop/how-it-works-the-differential/

Create a model: Vibration analysis system for farm tractor differential

Calvek-Design/CENAM collaboration-MJD Differential Elements

Test & Evaluation: Vibration analysis system for farm tractor differential

Calvek/CENAM collaboration-MJD Differential Elements

Transfer Metrology Know how: Vibration analysis system for farm tractor differential

Calvek-Design/CENAM collaboration-MJD Differential Elements

M2M Communication:

Vibration analysis system for farm tractor differential

CENTRO NACIONAL DE METRO

Developed Software in LabVIEW+ XML

communication stage

Calvek/CENAM collaboration-MJD Differential Elements

M2M Communication: Vibration analysis system for farm tractor differential

• The system works as follow:

M2M Metrology Parameters: Vibration analysis system for farm tractor differential

• The system works as follow:

	120826		1100								-				
and the second second		San		filtrar						Con filtra		10200			
Der	iche		18	Ltdr	erdo		-	- Der	echo		ntal .	1204	UD IN		mmu
OF.	PMS	0	PMS -	0	PMS	CF Total	Phills Total	- DF	PMS .	0	RM5	OF.	1945	CF Total	FIMES Total
156026	0.45355	3.45147	0.90175	10.25881	0.35759	15.02074	0.45036	8.45181	0.2524	5.11259	0.59033	3.62627	0.18463	9.97241	0.24423
159747	0.45209	13.00064	0.90827	1196925	0.35919	\$6.648%	0.99902	8.58105	6.24859	5.14909	0.58615	5.63197	0.10452	6.7%02	0.59185
129214	0.45285	M 46712	C3672.0	95.74791	0.36290	30,63,08	0.36492	0496	0.24757	6 MORE	6 12007	1136195	0 16485	54,70363	0.9549
1 1/80	0.46364	10,00001	0.05111	10 72054	0.36417	6	0	3,50962	6 34676	6 79070	0.69251	¥ 22206	0.06%	0	0.047
A MAK	0.406.74	10.03001	0.0010	10.7 200.00	0.0040			4.00000	0.244/2	6.7676	0.00000	M. COMP.	0.0000	0	
11/068	0.44999	8.5/000	0.0000	8.67007	0.804	····· 9	0	3.96/1	0.24447	67067	0.59400	16,57764	0.0509	0	
102074	0.45036	8.6408	0.94905	11.6325	0.36452		0	3.97241	0.24423	6.7802	0.5986	14.76363	0.1045	0	0.
102458	0.45577	\$4,37864	0.91410	\$ \$7900	0.36237			9.24909	0.24717	5 92419	0.58990	1246464	0.16504		
1040	0.2769	17.7701	0.7709	218605	0.8112			7.58%	1:071	12.3360	0.4340	18 7003	0.27%		
			Med	2											
		Sin filtrar							Con filtre PB 2 Mar						
Dececho		Central		Inguerdo			10.00	Derecho		Če	Certral Inna		ando		
CE	DAR.	11	16.45	CF	0.6	CE Total	D.F. Loui	- 10	DAG	- er 7	BAE	CE	D.C.	CE Total	IB45 Total
1014	A FRICK	14 27417	A DOMY	11.070	0.10714	11/2011	0.40042	A MARK	0.5083	KANN	8.49997	15 34 399	0.100	4 76754	0.16717
23,743	0.0000	14 41040	0.0010	10.4700	0.00105	W 20474	0.00450	0.40343	0.20027	0.00000	0.40000	44 00200	0.0007	10000	0.0000
132523	0.49/22	H450	0.87271	8 7.962	0.39400	0.434/1	0.85452	2.45/4/	0.26007	6.5/025	0.90501	14.90702	0.0594	6.85/63	0.51331
01475	0.49902	1200535	0.87059	18.08377	0.39563	18.0579	0.79679	3.64103	0.25134	8.89994	0.51022	14.85033	0 19/59	M 6,851	0.1973
10386	0.48433	5.5133	0.6628	18.00039	0.3968	0	.0	37076	0.25827	6.90705	0.50963	14.82953	0.19796	0	0.0
25177	0.4799	5,25374	0.85625	18 10838	0.39509	0	0	3.0425	0.25599	6.30365	0.50768	94.87054	0.19732	0	0
23629	0.49042	15.29471	0.85452	10.0579	0.39619	0	0	9.79714	0.25717	6.05763	0.57021	N 82951	0.1979	0	0
		1.				1.1.1	107 0		1000				1000	- 274	21
1000	0.490%	14 90'59	0.96615	19 14661	0.79426			N.CANPE	0.3678	6.77627	0.50761	14 9210	0.9667		
5 8053	2 3062	2 2 2 2 4	1,0095	0.052	0.0072			10900	1799	6.9967	0.0402	0.90%	0.9055		
1001	6.60%	#100	11603	Raup	0.0015			10000	11.00	3 346	0.0401	0.064	0.000		
			Mad	1.											
			Cie	Ellen							Con film				
Detector		Canterd		till at			_	Density		P	Contribution of the Arrise		landa.		
UNI	NPO			0.04	100	1.00	and the second	Uer	676		CER .	109.	10.00		and the loss
CF	FMS	OF .	FMS .	CF	FMS .	CF Total	FMS Total	OF .	PMS .	OF .	PMS	OF .	RMS	OF Total	FIMS Total
46138	0.49608	15.0827	0.95069	15.67477	0.40450	12:03935	0.49434	7.27397	0.25908	5.22546	0.57179	12.09692	0.2031	8.05594	0.25705
79222	0.47244	15 62842	0.91749	\$6.09987	0.39424	16.43066	0.89079	7.40218	0.25107	5.34396	0.56296	12.39462	0.19822	6.69792	0.56053
17716	0.47996	\$ 95003	0.90462	8,889	0.39404	17 99097	0.295%	7.95471	0.29827	6.69684	0.50002	12 3002	0.19845	12 39973	0.1983
17085	0.47979	10,00005	0.09274	10.05410	0.99276		0	793443	0.96234	6.71461	0.66348	12 40301	0 19909	0	
NOCE.	0.67075	10 100103	0.00675	40 (1997)5	A 50355		0	7.04304	0.1660.0	6 2004	0.00000	12 41007	0.40706	0	
10006	0.47972	10.20033	0.00010	10.07323	0.00044			1.04001	0.17700	0.13011	0.20070	12.45007	0.0120	U O	
0,050	0.494.94	8.4,000	6 830\A	V.39057	0.00.6		0	8.800.94	925/93	6.63/32	0.26023	£.309/3	0.8963	0	. U
				-					-2						
197160	0.47987	15.88543	0.90701	17.00121	0.39590			7.90554	0.29567	6.24815	0.56105	12.34591	0.19902		
2257	0.9212	2,7939	2.4418	6.1784	1.0308			8.2940	0.8492	10.5293	10247	0.9053	0.9201		
		Med		204						BY SAME SHOULD					
- 12 CONT - 1		Sinfi		rillrar						Con filtre P		PBZIHz			
Derecho		Central		Iziaverdo			to-conside	Der	echo	Ce	rital	lzą,	ierdo		
CF	RMS	OF	RMS	CF	RMS.	CF Total	FMS Total	CF	RMS	OF	PMS	OF	RMS	OF Total	FIMS Total
1.9606	0.4554	\$ 58231	0.33419	15 16684	0.29032	13.71944	0.495%	\$.2359	0.25292	6,26347	0.5298	0.0025	0.19542	3,7064	0.24574
17176	0.05514	15 (2007)	0.98096	\$ 78306	0.16765	18 74717	0.099071	7 11405	0.25454	6.23980	0.57073	0.0984	0 10745	6 296/1	0.54537
100405	0.05700	19.50393	0.90996	\$ 06774	0.20152	10,000	0.39(7)	0.02965	0.74000	6 17622	0.51720	17 90706	0.16.26	17 00077	0.10743
Careful .	0.40703	10.046.07	0.00000	10.00c/4	0.00007	w well	U.Stera	4,01966	0.04000	0.57564	0.54103	10,07907	0.0000	N. 990/17	o they
64190	0.45/72	0.404.34	0.5100	6,20364	61090		0	36-00	0.24665	627253	0.543/4	\$2.37766	0.0506	0	
7.5297	0.45469	84,523	0.9043	16.07461	0.3901		0	3.68901	0.24618	6.2447	0.54567	15.20.0	0.19686	0	0
71944	0.45534	19.7470	0.89671	16.00811	0.39172	0	0	97064	0.24574	6.39513	0.54517	12.88077	0.19743	0	0
							397								
2610	0.45835	18.30544	0.95234	15.00917	0.39108			8.51652	0.24907	6.26527	0.53883	12.93902	0.19685		
2533	0.76%	2.9465	12247	1901	0.3595			16.0540	13200	10433	11722	0.3752	0.3749		
			Med												
			Sin	filtrar							Con filtre	PB2104			
Den	sche	Central		Inquerdo				Derecho		Canital		cibraik			
OF RMS		OF PAR		OF FMS		CF Total	PMS Total	OF	PM6	OF	PMS.	OF	B.6	OF THE	FMS Total
NORM	DANCS.	10.63383	0.05475	11 1000	A SETT	40 1414	16 ACD/H	0.33477	0.24302	1.1010	O DEDCH	6 1110	0.00045	40 00040	0.76205
00/340	0.44063	8152757	0.004/6	12.636	0.35121	10 Jul 4	0.4001	0.22417	0.24,552	3.8.01	0.50561	6.32.367	0.0045	0.30942	0.0001
179733	0.45064	22,3506	0.86212	13.88247	0.3595	22.42164	0.87336	10.41263	0.2581	5.89432	0.55628	11,43084	0.19077	6.44029	0.5711
159079	0.46493	22,17739	0.88904	0.73681	0.36397	16.46032	0.35974	10.28208	0.25481	6.50618	0.56532	11,76873	0.19203	11.45444	0.10968
155439	0.467%6	22 30690	0.06300	13,85403	0.36011	0	0	10,26538	0.29572	6.47055	0.56844	11.43687	0.19064	0	0
data and	A	22.26	0.0006	8.45063	0.20996	0	0	10,20049	0,25651	6.4554	0 56977	11.442%	0 19057	0	0
	0.46141			- 10 TONNO	- e e e e e e e e e					The second	a states		0.0000		
1,1014	0.46343	22,47974	0.07976	W A0211	0.195074		. 0	10 00042	0.250/15	E 44174	0.5710	10.00444	D 109602		
1.3124	0.46811	22.42%4	0.87936	16.46032	0.35974	0	0	10.30942	0.25601	6.44029	0.5710	17.40444	0.009680	0	
6.3040	0.46843	22.42%4	0.87936	16.46032	0.35974	0	0	10 30942	0.25601	6.44029	0.5710	1140444	0.0000	0	
67428	0.46343 0.46871 0.46255	22.42964	0.87936	¥.46032 34.42375	0.35974	0	0	9,96301	0.25601	6.10030	0.5711	10.57542	0.19980	0	•

Collected data obtained of the test of the differentials to stablish new limits

Data Base input : Vibration analysis system for farm tractor differential

• The system works as follow:

Developed algorithm to send the results in XML and then to the data cloud

Real **CENAVECALVER** CENAM-CALVEK-MJD ENAM-CALVEK-MJD AM-CALVEK-MJD

Data Raw DATA XML Data CC Accelerometer CC DAQ

Info-Calculed New Trends

Process/Adjustment

Virtual / Client Software

Digital Component Twinning: Vibration analysis system for farm tractor differential

Work in progress: Digital Twin Implementations

Add Agile Model to develop Projects (MESURA+AGILE) Include DCC to digital traceability and DT actualization. Implement our own AI algorithms for focusing on metrology. Implement DPS for Real Time process improvement Develop better toolkits of XML Metadata Remote Verification for accelerometers

Digital Twins

宋学官,来孝楠,郭正刚,邱一鸣,孙伟

Metrology for Digital Transformation SIM Conference 2021 September 1st and 2nd organized by SIM-MWG-14

ALDO ADRIÁN GARCÍA GONZÁLEZ E-MAIL: <u>algarcia@cenam.mx</u> TEL: 4422110500 EXT 3502

Thanks for your atenttion

Supported by

•

