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1) Definition: data mining A
INMETRO
Data mining refers to the application of algorithms for extracting

patterns from data*.

Cluster analysis

- PCA
- Kohonen

&N Metrology for Digital
*eulin M - . . : . : . = Transformation
Kulin, M.; Kazaz, T.;De Poorter, E.; Moerman, I. A Survey on Machine Learning-Based Performance Improvement of Wireless Networks: PHY, MAC and Network Layer. Electronics 2021, 10, 318 S




1) Definition: machine learning I

Machine Learning is normally defined as a series of methods that learn from the data to make or INMETRO

construct a model that can make informed decisions based on what is learned™. ,
learning process

: @) Building the model b) Testing the model
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1) Definition: deep learning I
INMETRO

Deep learning is a subset of ML, in which data is passed via multiple number of non-linear transformations to
calculate an output™.
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*Kulin, M.; Kazaz, T.;De Poorter, E.; Moerman, I. A Survey on Machine Learning-Based Performance Improvement of Wireless Networks: PHY, MAC and Network Layer. Electronics 2021, 10, 318



1) Definition: artificial intelligence I
INMETRO

The science and engineering of making intelligent machines, especially computer systems by reproducing
human intelligence through learning, reasoning and self-correction/adaption™.

Metrology for Digital
Transformation
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1) Definition: data science :::

_ . . . INMETRO
Data science is the study of the generalizable extraction of knowledge from data*.
Artificial
Intelligence
Data science
Deep
Iearning Data mining
Metrology for Digital

*Kulin, M.; Kazaz, T.;De Poorter, E.; Moerman, I. A Survey on Machine Learning-Based Performance Improvement of Wireless Networks: PHY, MAC and Network Layer. Electronics 2021, 10, 318 TranSfor



1) Definition: mefr'ology I

INMETRO

Metrology is "the science of measurement, embracing both experimental and
theoretical determinations at any level of uncertainty in any field of science and
technology,” as defined by the International Bureau of Weights and Measures

(BIPM, 2004).
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N
2) Data: new gold )
INMETRO
Data is considered nowadays as the new gold.

-The volume of business data around the world duplicate every 1.2 years™.

*Fonte: https://www.bigdatanews.datasciencecentral.com/profiles/blogs/a-comprehensive-list-of-big-data-statistics Metrology for Digital

Transformation
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2) Data: new gold I

INMETRO

- Farmers from Iowa to India are using data from seeds, satellites, sensors, and
tractors to make better decisions about what to grow, when to plant, how to
track food freshness from farm to fork, and how to adapt to changing
climates™*.

Revolution of Agricuftural Sectors
wiing Big Data Technologies

&R Metrology for Digital
** Source: "What's the big deal with data”, BSA https://data.bsa.org/ S Metrology for D




2) Data: new gold I

INMETRO

Reference data are assessed by experts and are trustworthy such that people can
use the data with confidence and base significant decisions on the data.

We have rich data,
but poor information

Data mining-searching for knowledge
(interesting patterns) in your data.

&R Metrology for Digital
HAN, J: KAMBER, M. Data Mining: Concepts and Techniques. Elsevier, 2006. ! Transfor
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-
3) Generating trusted data for machine learning -

INMETRO
How can I obtain these data ?

Building the model

-Trusted measurements
-Appropriate instruments for the purpose Variables Information

-Calibrated instruments

-Trained operador
Model

Samples
Samples

- Reference material
- Standard reference material

Ensure the metrological reliability of the developed models.

It allows you to make a reliable and accurate decision.

Metrology for Digital
Transformation

%-‘;._\)‘];\



-
3) Generating trusted data for machine learning -

INMETRO

<« C O B https//www.buzzfeednews.com/article/stephaniemlee/dan-ariely-honesty-study-retraction ® v i

BuzzFeed News

REPORTING TO YOU

SIGNIN ABOUTUS GOTATIP? SUPPORTUS BUZZFEED.COM SECTIONS ¥

SCIENCE

A Famous Honesty Researcher Is
Retracting A Study Over Fake Data

Renowned psychologist Dan Ariely literally wrote the book on dishonesty. Now some are
questioning whether the scientist himself is being dishonest.

; Stephanie M. Lee
Q BuzzFeed News Reporter



3) Generating trusted data for machine learning

Environmental samples
Pharmaceutical samples

Variables
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4) What does the data say ?
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4) What does the data say ?

a) Is the person diabetic ?
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4) What does the data say ?
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4) What does the data say ?

¢) How much sugar do T have in my soda?

variable variable
J— n o —
I variable i\ variable’
- 5 - - . —

variable 4 = S a ria ble
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4) What does the data say ?

—— — ~ — .,
\ val ﬁabﬁé =) (}sﬂ'la@g)\ (\\_,\ﬂ'ia@_e_)\ o
“--"-. = (L_variat?fe_;_\
Camlh \yariable
\ variable

Metrology for Digital

answer questions related to the metrological area under study. N @ rorsformation



Topics

1) Some definitions
2) Data: new gold
3) Generating trusted data for machine learning

4) What does the data say?

6) Conclusions



Example

Fuel 243 (2019) 413-422

Contents lists available at ScienceDirect

Fuel

journal homepage: www.elsevier.com/locate/fuel

Full Length Article

Determination of physicochemical properties of petroleum derivatives and @ M)

Check for

biodiesel using GC/MS and chemometric methods with uncertainty updates
estimation

Werickson Fortunado de Carvalho Rocha®, David A. Sheen"”

# National Institute of Metrology, Quality, and Technology-INMETRO, Division of Chemical Metrology, 25250-020 Duque de Caxias, RJ, Brazil
b Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA

Metrology for Digital
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Goal

The objective of this work is to build models with uncertainty
estimation to predict the physicochemical properties of the fuels.

prsc) Metrology for Digital
Q@} Transformation




Experimental data

‘ Data acquisition by GC-MS ‘

Physical-chemical
‘ Making decision ‘ > properties
of fuels with reliability

~r
|

|

I

Chemometric analysis
with
uncertainty estimation

‘standard ASTM method-‘ @ qﬂrgtnrgflgg% é‘%g IETJigital




Experimental data

Table 2. Main characteristics and properties of samples used in
Table 1. Physicochemical properties and this study. The values are an average of duplicate measurements.

methods for sample characterization. e Towe 1o T o T e T 1w T

i DS e oL/ | TR . : ’
. Method Gasoline
P1s

Density at 15°C (kg/m?3) ASTM D4052 Kerosene 803 769.7 1.265 0.7304  -58.5 0.175 1.45
Density at 60°C (kg/m3) Peo ASTM D4052

Kerosene 8263  793.8  1.555  0.6244 -66 0.18 1.1
Kinematic viscosity at 40 °C v Kerosene 779.7 746 1.079 0.652 -63 0.18 1.95
(mm?/s) 4° ASTM D445 SRM 1616b Kerosene 827.6 794.2 1.578 2.557 -55.5 0.16 0.9
N R R i G v SRM 1617b Gasoline ~ 809.1 777 1401 1487  -585 0225 155
(mm?/s) * ASTM D445 Residual

T, ASTM D5949 SRM 1620c s | — | — | = | = | — 0.52 2.6

N Residual
Al U 0 bl A ASTM D664 SRM 1623c¢ _ 9022 8689 5239  1.968 -3 0.31 1.1
Base number (mg KOH/g) Ng ASTM D4739 Oil

SRM 1624d Diesel Oil 849.7 818.1 3.179 2.308 -9 0.29 1.05
SRM 2721 Crude Oil 881.25 834.8 9.158 2.793 -70 0.645 1.35
SRM 2722 Crude Oil 911 880.8 8.584 2.324 -9 0.44 1.05
SRM 2723b Diesel Oil 848.8 817 2.763 1.14 -36 0.23 1.95
SRM 2770 Diesel Oil 818.6 787.3 3.128 2.3095 -16.5 0.17 0.9
SRM 2771 Diesel Oil 835.1 804.95 3.054 2.72 -54 0.09 11
SRM 2772 Biodiesel 885 852.5 255 | === 0 0.18 0.8
SRM 2773 Biodiesel 879.9 847.3 4.414 1.73 9 0.43 1.15

SRM 2779 Crude Oil 844.35 796.3 2.461 2.712 -60 0.16 1.25

. ) Metrology for Digital
Q‘é‘% Transformation




Results and discussion



4
L)

Performance of the PLS and SVM
regression models for  selected
properties. e e

“m ASTM Method

Density at 60°C (kg/m?) Peo ASTM D4052

Veo
Kinematic viscosity at 60 °C (mm?/s) ASTM D445

Pour point (°C) T ASTM D5949
Acid number (mg KOH/g) Na ASTM D664

2
&

Model value / kg m~3
3
o
;K
Model value / kg m~3

Metrology for Digital
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Conclusions

In this work, linear and non-linear methods with uncertainty were used to
estimate physicochemical properties of fuels using GC-MS data.

The properties were measured using ASTM standard methods, and partial least
squares and support vector machines were used to determine a relation between
the GC-MS data and the measured properties.



SR Fuel

Lok Volume 197, 1 June 2017, Pages 248-258
ELSEVIER
Full Length Article

Unsupervised classification of petroleum
Certified Reference Materials and other
fuels by chemometric analysis of gas
chromatography-mass spectrometry data

Werickson Fortunato de Carvalho Rocha 2, Michele M. Schantz b, David A. Sheen 2 2 = Pamela M.

Chu ®, Katrice A. Lippa b

Q@\;}

Metrology for Digital
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Goal

« The objective of this work is to build chemometric models for unsupervised
classification of transportation fuels using GC-MS.

ol Metrology for Digital
Qf@f Transformation




Experimental part: GC-MS analysis

SRM 1615
SRM 1616b
SRM 1617b
SRM 1620c¢
SRM 1623¢
SRM 1624d
SRM 1848
SRM 2299
SRM 2721
SRM 2722
SRM 2723b
SRM 2770
SRM 2771
SRM 2772
SRM 2773
SRM 2779
Gasoline
Jet A

JP5

JP8

SRM # (if applicable) Identification

Gas Oil
Sulfur in Kerosene (Low-Level)
Sulfur in Kerosene (High-Level)
Sulfur in Residual Fuel Oil (4 %)
Sulfur in Residual Fuel Oil (0.3 %)
Sulfur in Diesel

Motor Oil Additive
Sulfur in Gasoline
Crude Oil (Light-Sour)
Crude Oil (Heavy-Sweet)
Low Sulfur Diesel
Sulfur in Diesel Fuel Oil
Zero Sulfur Diesel
Biodiesel (Soy-Based)
Biodiesel (Animal-Based)
Gulf of Mexico Crude Oil

Table 1. List of Materials Analyzed in This Study

Description

Special low sulfur kerosene (No.1-K) for nonflue-connected applications
High sulfur kerosene

Commercial “No. 6” residual fuel oil

Commercial “No. 4 (light)” residual fuel oil

Commercial “No. 2 D” distillate fuel oil

Additive used in manufacture of lubricating oil for gasoline engines
Commercial reformulated unleaded gasoline

Light-sour Texas crude oil

Heavy-sweet Texas crude oil

Commercial “No. 2 D” distillate fuel oil

Commercial “No. 2 D” distillate fuel oil

Commercial diesel fuel blend stock

Commercial 100 % biodiesel produced from soy

Commercial 100 % biodiesel produced from animal products
Collected from 2010 Deepwater Horizon oil site

Commercial 87-octane gasoline sold in 2015
Jet fuel from Air Force Research Laboratory (AFRL)

Jet fuel from AFRL
Jet fuel from AFRL







MPCA Scores
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Kohonen



U-

matrix
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Conclusion

The results show that the combination of GCxMS and chemometric
analysis can be employed as a general tool for the differentiation of
petroleum Standard Reference Materials and other fuels. This procedure was
tested with many fuels class. Also, many classes were properly differentiated

through pattern recognition by MPCA and Kohonen.
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Accred Qual Assur (2011) 16:523-328
DOI 10.1007/s00769-011-0807-9

PRACTITIONER’S REPORT

Use of multivariate statistical analysis to evaluate experimental
results for certification of two pharmaceutical reference materials

Werickson Fortunato de Carvalho Rocha -
Raquel Nogueira

Received: 12 May 2011/ Accepted: 5 July 2011/ Published online: 22 July 2011
© Springer-Verlag 2011



In this paper, we purpose the use of the multivariate
statistical analysis for an easy and quick evaluation of the
homogeneity test data, followed by selection of the repli-
cates to be considered for u; calculation. It should be

noted that the paper has also_the intention to_encourage
metrologists to_apply chemometric techniques on _their
activities, for instance at different stages of the production

and certification of reference materials, and also in profi-
ciency testing. Few publications exist in this field, from
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Table 1 Standard uncertainty due to between-bottle(in) homogeneity
(upp) for the metronidazole and captopril candidate CRMs with our
without deletion of outliers

iy, (/100 g)

Metronidazole Captopril

All data points 0.002917 0.015218
Data points excluding outliers 0.9015043l 0.01«-}877h

ates 1, 2, and 3 of one gample;

* 9 of 117 results were excluded (replj
3 HPLC injections each)

b

3 of 102 results were excluded (feplicate 3 of one sampl¢; 3 HPLC

injections) 48 ' 449, 2 ) 24%



Conclusions

For the metronidazole and captopril CRMs, the results
from the multivariate analysis methods of PCA and HCA
revealed that some replicate results diverged from those of
the main groups of homogeneity test results. Considering
that _these observed differences are small, they cannot be
casily detected. The multivariate analysis was able to
indicate, with a reliability of 95% confidence, which
samples should not be taken into consideration for homo-
geneity evaluatlon leading to an uy,, reduction by < ’48 44\
and ( 2 24%) for metronidazole and captopril CRMs,
Iespectwely
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Microchemical Journal xxx (2012) Xxx—xxx

Contents lists available at SciVerse ScienceDirect

Microchemical Journal

journal homepage: www.elsevier.com/locate/microc

A comparison of three procedures for robust PCA of experimental results of the
homogeneity test of a new sodium diclofenac candidate certified reference material

Werickson Fortunato de Carvalho Rocha *, Raquel Nogueira, Gisele Estevdo Baptista da Silva,
Suzane Maio Queiroz, Gabriel Fonseca Sarmanho

National Institute of Metrology, Quality and Technology (Inmetro), Directorate of Industrial and Scientific Metrology, Chemical Metrology Division, 25250-020, Xerém,
Duque de Caxias, RJ, Brazil




PCA PCA 1 PCA 2 PCA 3

Table 2
Standard uncertainty due to between-bottle {in)homogeneity (uy,) and its contribution C for the sodium diclofenac candidate CRM, with our without deletion of outliers.
All data Classic PCA Projection pursuit-PP ROBPCA Spherical PCA
MSperween (g 100 g~ 128 177967310 1511814x10* 1.328008 %104 1.448167x 10 * 1.499739x 10 *
MS itnin (£ 100 g~ 1) 2.185600x 10 1.146937 %10 * 1.136185x 10 * 1.140589x 102 1.151570x 103
ng” 9 9 9 9 9

ups (£ 100g 1) % . . ; 3 |
C (%) : : . : )

4 Mean square between CRM batch unifs from single factor ANOVA.

b Mean square within CRM batch unitff from single factor ANOVA.
© number of replicates.

0.0039419 0.0038521
0.0036753 0.0039242

0.004166
Reduction in the uncertainty of homogeneity 11.8 %.



4. Conclusions

In chemical metrology, robust statistical methods find several appli-
cations, including dimension reduction, modeling and model evaluation,
and qutlier detection. Robust methods focus on modeling the data ma-
jority, and they downweight deviating or outlying observations.

In this paper, it was demonstrated that PCA modeling was an effi-
cient tool to identify outlying results in the data series from the homo-
geneity test for certification of a new pharmaceutical candidate CRM.
The identification and further elimination of outliers guaranteed the ac-
curacy of the estimated uncertainty due to due to between-bottle (in)
homogeneity (u,,) and of the CRM standard uncertainty (ucrm).

The robust PCA based on PP showed the best performance for
identification of outliers, leading to reductions in the contribution of
(in)homogeneity (C) and u,;, values byf11 .85'9‘ This multivariate statisti-
cal method can be considered an importarit tool to evaluate experimen-
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Sensors and Actuators B 158 (2011) 327-332
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Fig. 2. Scores plot in the first principal component (PC1), resulting from PCA, com-
paring the different electrodes. The PCA was carried out using all the data without
any pre-treatment (electrodes as rows or samples and raw pH data as columns or
variables).

Conclusion:

Electrodes

1 I 1 1 J
1.0 0.8 0.6 0.4 0.2 0.0

Similarity

Fig. 3. Dendrogram plot, resulting from HCA, comparing the different electrodes.
The similarity data (S) are related to the distance between the electrodes in the mul-
tidimensional space (electrodes as rows or samples and raw pH data as columns or
variables) according to the equation 5=[1 — (d/dmax )], where d is the Euclidean dis-
tance between two specific electrodes and dpay is the maximum Euclidean distance
considering all the electrodes [23].

It can be concluded that the electrodes A, B and D have similar

results.

The work suggests a revision of ASTM D6423 which indicates
that the use of electrode (Orion) is required.
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Topics

1) Some definitions
2) Data: new gold
3) Generating trusted data for machine learning
4) What does the data say?

5) Examples



6) Conclusions

- Data science methods have been used in metrological activities in order to transform complex data into
relevant information.
- There are several applications that use data science methods to perform metrological activities that

provide better understanding of the results.
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Metrological evaluation of lung ultrasound using virtual vector machine for diagnosis of acute
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