

M4DT DAY ARTIFICIAL INTELLIGENCE EVALUATION & CERTIFICATION AT LNE Guillaume Avrin – Head of the « AI Evaluation » Department

30/9/21

SCOPE

Objective: to identify the challenges and means of evaluating AI systems during the development, certification and maintenance phases

Al requirements and evaluation needs

- Evaluation criteria
- Regulations in force

LNE resources and activites for conformity assessment of AI

- Evaluation standards
- Test on dataset, simulator or physical environment
- Certification

FRENCH NATIONAL LABORATORY FOR METROLOGY AND TESTING

Created in 1901

- LNE vocation is:
 - to coordinate French metrology;
 - to be the national reference laboratory for testing, metrology and certification activities;
 - to continue its scientific and technical development in order to anticipate the needs for characterization and certification related to new products and technologies;
 - to provide technical assistance for the development of new regulations and standards at international, European and national levels.

- Leading multidisciplinary testing and analysis facilities in Europe with 55,000m² of lab space.
- Turnover of 80M€ including 20% for R&D, 800 employees.

MATCHING AI SUPPLY AND DEMAND

An AI evaluation must be set up to allow the supply to best meet the demand.

NEED FOR AI EVALUATION – EXAMPLE IN INDUSTRIAL ROBOTICS

NLP:

- personal assistant
- voice control
- speaker rocognition

Data analysis:

robo-advisor

maintenance

Human-machine interaction:

predictive and preventive

- collaborative robot
- conversational agent

Image recognition:

- surveillance
- people recognition
- object and pose recognition
- OCR

Process automation:

- dexterous manipulation
- Robotic Process Automation

Autonomous navigation:

- logistics robot
- intervention robot
- inspection robot

LNE'S ACTIVITIES IN AI EVALUATION

Activity n°1: development of evaluation standards

Activity n°2: Al systems testing

Activity n°3: certification of AI development and evaluation processes

Activity n°4: development of evaluation tools

Activity n°5: professional training on Al evaluation

- 10+ years of experience
 - 15+ ongoing R&D projects
 - 950+ systems evaluated
 - 15+ experts on AI Evaluation

ON-GOING EXPERTISE IN EVALUATION OF AI SYSTEMS R&D Service Agricultural robotics PROJECTS robots (Robocom, 23 (Rose, 1 **SPEECH AND TEXT ROBOTICS** partners) partner) **Biodiversitv** Transcription, Keyword spotting, (IA-Biodiv, 2 Speaker comparison, Named entities partners) recognition, Translation, etc. Autonomous **Evolutive** vehicule systems (3SA, 11 (Allies, 4 ترحيب ، يسعدنا أن نرحب بكم partners) partenaires Future **Bienvenue**, nous sommes Ja se cockpit ravis de vous accueillir (MMT, 1 Dialogue Analog Al systems (AIR. 3 (Lihlith, 5 **IMAGE** partners) partenaires) Object recognition, head tracking, OCR, **Speaker** recognition etc. (Voxcrim, 5 partners) AI P.P. TT P. TT P.P. DREET Speed Limit: 110km/h **Robotics** certification competitions de l'IA (Metrics, 16 (Grand défi, partenaires) 15 partners) Smart medical devices More than 10 years of experience in AI AND (Labinnov, 3 evaluation and more than 950 systems partners) **MULTIMODAL OTHERS...** evaluated BUILDING

AI REQUIREMENTS

AI EVALUATION THROUGHOUT THE LIFE CYCLE

Evaluate AIs from their development to their maintenance.

- 1 Evaluation in the development phase (project owner: developer)
- To guide R&D efforts
- To position oneself in relation to the competition
- Strengthen marketing arguments with quantitative and reliable measurements

2 – Conformity assessment (project owner: developer)

- CE marking (Machinery Directive, Medical Devices Directive, etc.)
- Voluntary certification

3 - Benchmarking (project owner: end user)

Make an informed choice among the different technologies available on the market

4 – Monitoring and maintenance (project owner: end user)

- Acceptance test
- Measure possible drifts of systems evolving in changing environment
- Measure possible performance regressions of lifelong learning systems

SPECIFICITIES OF AI TO BE TAKEN INTO ACCOUNT FOR ITS EVALUATION

Al evaluation is different from traditional software verification and validation.

A - Essentially functional evaluation

- It is the adaptability of AI that makes it "intelligent".
- Al is therefore intended to operate in an open, often unstructured environment.
- An intelligent functionality is essentially evaluated by estimating the size of its operating domain.

B - Non-convex behavior

- Performance cannot be determined by interpolation and extrapolation between different operating points.
- Need to implement test tools that optimize the coverage of the operating environment (identification of corner cases, etc.).

C - Black Box

- Code auditing and formal verification are only rarely available.
- Al is often expected to be "explainable", i.e. to be able to justify its decisions with the right level of detail.

D - Evolving (sometimes)

Need to put in place certification compatible with lifelong learning capabilities

AI EVALUATION CRITERIA

LNE incorporates all the criteria relevant to its partners into its evaluation standards:

 Performance, robustness, and resilience evaluation characterization of the operating environment qualification of test data and environments data augmentation and automatic test scenario generation ongoing R&D projects: 10+ 	 Evaluation of human-machine interaction within the framework of a close cooperation between an intelligent assistant and the pilot for example ongoing R&D projects: 2
 Explainability evaluation quality of the explanations justifying the decision taken use of explanations to improve the tests carried out ongoing R&D projects: 4 	 Risk anakysis structured process for risk analysis of AI-enabled robotic systems to compensate for the lack of a standard ongoing R&D projects: 3
 Ethics evaluation bias analysis, regulatory compliance, regulation of online platforms, etc. ongoing R&D projects: 2 	 Energy consumption analog AI vs. digital AI, use of quantum technologies, etc. ongoing R&D projects: 2

LNE'S INVOLVEMENT IN AI STANDARDIZATION

Afnor AI:

- pilot of the ad hoc group on the use of simulation to develop and evaluate AI
- member of the expert group on AI evaluation
- several contributions on AI evaluation and data characterization
 CEN-CENELEC (JTC21):
- several contributions to the European roadmap and to the Focus Group's response to the European Commission's White Paper
- writing of a scientific paper in collaboration with the other members of the Focus Group ISO/IEC JTC 1/SC 42:
- member of WG1, WG3 and WG5
- several contributions, notably to the ISO/IEC 24029 TR "Assessment of the robustness of neural networks

UNM81 Robotics:

- Member of the AGV group
- Several contributions, in particular to the CEN WS 110 carried by the DIN on the performance of exoskeletons: comparative analysis of test benches and proposal of test environments consistent with those of the NIST

EXISTING TOOLS AND THOSE TO BE SET UP

AI EVELUATION METHOD

AI EVELUATION METHOD

USEFUL TOOLS FOR EVALUATION

1. Data

2. labeling

DIANNE

Data augmentation

- Generation of adversarial testing scenarii
- etc.

Math Diama Math Non Math Math

Image labeling Automatic Pre-labeling

3. Protocols, metrics

MATICS :

Datomatic – Dataset prep. and visualization **Evalomatic** – Evaluation and visualization

		POLAN Station			In Republic								
				autor 1									
				RINCOL				GCONFERE	GCOMPERE 54			004	
				petter version 1				aydism vestion 1	petien region				
				Owner	Oreillettes	Primary	Tarbiation	Primero	Owied	Bald	Primery	Sphine	
				2-1234	2-18.0	p-value	p-mke	p-value	p-raise	9-04.00	2-124	2-1641	
PERCO		out an untitle 2	Oreactions		1,274546-00		62.62	¥96/234-67	S	00044-000		K-1929 C	
		Least writing	Onlines	2,07484+11	-	0,362076	LITER II	6,276763	CHARMEN .	QUITE N	12044-12	CARDON NO.	
		and war services 2		7,62634-22	3,82176		2, 81864-22	0,2010,78	C-10552e-125	1,14738+-78	C194524-083	1,24964-85	
		meter writes 2	Tatacia	6,2787	UPPRIATE.	1,00506-22		1,78034-28	8 8828+117	2,256875.95	N		
cien de	come Machine all systems overlap 2 Printers		1,81729+47	0.475753	0.00118	1,21031-00	4	S	1.1185.00-15	CHAN-Es	4.100344-0		
seed		Sectors writes		8,02034e-288		6,589524-019	1,6404-312	4,76832+-305	F	2,8%8.Mar.29	6,80323-07	7,429634-29	
		Sectors which		5,89144-385		3.53138+75	2,80487+95		131010-22		C2008+15		
	104 j	Sectors write		1,04081-02		538450x-000	0.01044-026		Q632x-17			4.00003-04	
		nine venier 2	Sphine	6.4762x 22	1.845324-94	5,2485e-85	LK9005e-319	6,29554(-85	7,42965e-15	L\$5050x-05	4.75002e-LA	-	

ARTIFICIAL INTELLIGENCE EVALUATION LABORATORY (LEIA)

WHAT IS A CHALLENGE?

Evaluation campaigns to benchmark the performance of competing technologies, whose metrological rigor, collective emulation and knock-on effect generate progress in the field.

Repeated campaigns over time to assess progress:

R&D funding tool to bridge the TRL death valley (with monitored R&D efforts and targeted participant profiles):

EXEMPLE DU PROJET H2020 « METRICS »

17 european partners

4 competitions

POSSIBLE APPROACHES TO AI CERTIFICATION

Process certification:

The AI functionality has been properly constituted (evaluation of the learning, evaluation and maintenance phases)

- Create confidence in the AI developed based on process control
- Analogous approach to creating trust via processes (management system certifications, CE marking of medical devices, aerospace etc.)

Product certification :

The AI functionality has a compliant behavior (test of the functionality)

- Impossible to address the needs of all sectors in which AI is used
- Very expensive
- Not very flexible

People certification: Those involved in the development or use of AI throughout its life cycle are competent.

CERTIFICATION OF FOUR KEY PROCESSES

Design process

Transform an expression of need into functional specifications.

Development process

• Translate these specifications into an evaluation-ready version of the AI functionality.

Evaluation process

Verify the conformity of the system to the defined specifications before its deployment.

Maintenance process

 Ensure compliance of AI functionality with defined specifications after deployment and throughout its operational phase.

Thank you for your attention

Guillaume AVRIN, PhD

Head of the « AI Evaluation » department Testing direction Tel: +33 (0)1 30 69 13 62 - Mob: +33 (0)7 60 49 01 24 guillaume.avrin@lne.fr Laboratoire national de métrologie et d'essais 29 avenue Roger Henneguin 78197 Trappes Cedex - lne.fr

