...working with industry to foster innovation, trade, security and jobs

# The National Nanotechnology Initiative and Nano-scale Length Metrology

T.V. Vorburger (<u>tvtv@nist.gov</u>), Precision Engineering Division

R.G. Dixson, J. Fu, N.G. Orji, M.W. Cresswell, R.A. Allen, W.F. Guthrie, S.C. Feng, W. Chu

National Institute of Standards and Technology Gaithersburg, MD 20899, USA

> Simposio de Metrologia Querétaro, Mexico October 22, 2008



# **Contents:**

# •The U.S. National Nanotechnology Initiative (NNI)

-Goals

- -Activities
- -Organization...

# •Length Measurement Applications in the NNI

-Gold Nanoparticle Reference Materials

#### •Probe-based Nano-scale Length Measurement

-Critical Dimension Atomic Force Microscopy (CD-AFM) of Linewidth

- -Image Stitching Linewidth Measurement
- -Si(111) Atomic Steps for Z-calibration of AFMs



# **Funding:**

NIST Manufacturing Engineering Laboratory Nanomanufacturing Program, NIST Office of Microelectronics Programs National Cancer Institute

# **Certain Materials Provided by:**

Michael Postek, Debra Kaiser, Andras Vladar (NIST) E. Clayton Teague (NNCO)



# What is Nanotechnology?

The understanding and control of matter at dimensions between approximately 1 nm and 100 nm, where unique phenomena enable novel applications... Nanotechnology involves imaging, measuring, modeling, and manipulating matter at this length scale.

From The National Nanotechnology Initiative – Strategic Plan December 2007



# What is the NNI?

A collaborative, cross-cut program established in 2001 to:

•Coordinate Federal nanotechnology R&D by serving as a central locus for communication, cooperation, and collaboration among agencies that wish to participate (currently 25)

•Provide a vision of long-term opportunities and benefits of nanotechnology

The NNI creates a framework for a comprehensive nanotechnology R&D program by establishing shared goals, priorities, and strategies. The NNI as a program does not fund research but it informs and influences the Federal budget and planning processes through its



member agencies.



# **Vision of the NNI:**

"A future in which the ability to understand and control matter at the nanoscale leads to a revolution in technology and industry that benefits society"... expedited through a program of coordinate R&D aligned with missions of participating agencies.





# **Goals of the NNI:**

- 1) Advance a world-class nanotechnology R&D program
- 2) Foster the transfer of new technologies into products for commercial and public benefits
- 3) Develop and sustain educational resources, a trained workforce, and the supporting infrastructure and tools to advance nanotechnology
- 4) Support responsible developments of nanotechnology



#### **Program Component Areas:**

Fundamental Nanoscale Phenomena and Processes – knowledge, new phenomena

•Nanomaterials – nanostructured materials with targeted properties

•Nanoscale Devices and Systems – novel devices

 Instrumentation Research, Metrology, and Standards for Nanotechnology – tools for characterization, synthesis, design (NIST is lead)

•Nanomanufacturing – scaled up, cost effective manufacturing (NIST is co-lead)

- •Major Research Facilities and Instrumentation Acquisition infrastructure
- •Environment, Health, and Safety assessing and managing risk

•Education and Societal Dimensions – includes outreach, studying implications for society

#### 2009 Aggregated Budget Request ≈ \$1.5 B



# **Structure of NNI**



# **Global Issues in Nanotechnology Working Group**

•Coordinates international activities of the agencies in nanotechnology

•Monitors foreign nanotechnology programs

•Seeks to broaden international cooperation and communication with respect to nanotechnology R&D

#### **Issues include:**

- -Environmental health and safety
- -Trade and commercial interests



-Cooperation with other nations on joint R&D goals



## 64 major NNI centers, networks, user facilities



#### **Center for Nanoscale Science and Technology**



phan-courses i DR decline was, inc. Securital Directich Massing providing measurement methods, standards and technology to support nanotechnology development from discovery to production

cnst.nist.gov





| 74 Cm <sup>2</sup> Class 1 00 Clean-room incl           | udes    |
|---------------------------------------------------------|---------|
| <ul> <li>Atmospheric fundees</li> <li>Uneven</li> </ul> |         |
| PLPUVD<br>Plana station                                 |         |
| •Plasma etoning                                         | IN I    |
| •Photoitthography                                       |         |
| -Metallization                                          | IN IN   |
| -Nano-imprinting                                        | Sec.    |
| -Wafer dicing                                           |         |
| <ul> <li>E-team lithography</li> </ul>                  | 1 1 1 1 |
| -AFM                                                    |         |
| -FIB                                                    | 1100    |
| -FESBM                                                  |         |
| Process engineering and                                 |         |
| nanofabrication experts on staff.                       | BY/     |
|                                                         | 1 5 6 1 |

#### Open Access to Nanofabrication and Measurement



# **Contents:**

#### •The U.S. National Nanotechnology Initiative (NNI)

- -Goals
- -Activities
- -Organization...

# •Length Measurement in the NNI

-Gold Nanoparticle Reference Materials

#### Probe-based Nano-scale Length Measurement

-Critical Dimension Atomic Force Microscopy (CD-AFM) of Linewidth

- -Image Stitching Linewidth Measurement
- -Si(111) Atomic Steps for Z-calibration of AFMs



# **Applications at NIST:** Particle Standards for Medical Industries

Particle-based Delivery Systems in Medicine for Diagnosis and Treatment

 $\Rightarrow$  Size matters

Part of Joint Program with



Corona Targeting Molecule Drugs Core PEG (polyethylene Image Contrast glycol) Agent From D. Kaiser

NIST Reference Materials (RM) 8011, 8012, 8013 – Gold Nanoparticles

#### With Mean Sizes

8011 – 10 nm

8012 – 30 nm

8013 – 60 nm





A. Vladar, SEM of RM 8012 particles





National Institute of Standards & Technology

#### Report of Investigation

Reference Material 8012

Gold Nanoparticles, Nominal 30 nm Diameter

Table 1. Reference Value Mean Size and Expanded Uncertainty <sup>(a)</sup> Average Particle Size (Diameter), in nm

#### Technique

#### Analyte Form

Particle Size (nm)

| Atomic Force Microscopy             | dry, deposited on substrate | 24.9 | ±        | 1.1 |
|-------------------------------------|-----------------------------|------|----------|-----|
| Scanning Electron Microscopy        | dry, deposited on substrate | 26.9 | ±        | 0.1 |
| Transmission Electron Microscopy    | dry, deposited on substrate | 27.6 | <u>+</u> | 2.1 |
| Differential Mobility Analysis      | dry, aerosol                | 28.4 | ±        | 1.1 |
| Dynamic Light Scattering            | liquid suspension           |      |          |     |
| 173° scattering angle (backscatter) |                             | 28.6 | $\pm$    | 0.9 |
| 90° scattering angle                |                             | 26.5 | $\pm$    | 3.6 |
| Small-Angle X-ray Scattering        | liquid suspension           | 24.9 | $\pm$    | 1.2 |





# Applications at NIST: Length Metrology for Semiconductor Manufacturing

- Linewidth
- •Step Height
- •Line Edge Roughness
- Pitch

#### In collaboration with







# **Contents:**

#### •The U.S. National Nanotechnology Initiative (NNI)

- -Goals
- -Activities
- -Organization...
- Length Measurement in the NNI

# •Probe-based Nano-scale Length Measurement

-Critical Dimension Atomic Force Microscopy (CD-AFM) of Linewidth

- -Image Stitching Linewidth Measurement
- -Si(111) Atomic Steps for Z-calibration of AFMs



#### Motivation: Decreasing Critical Dimensions in Semiconductor Manufacturing

| Technology Node              | 130nm | 115nm | 100nm | 90nm | 65nm | 45nm | 32nm | <b>22nm</b> | 18nm |
|------------------------------|-------|-------|-------|------|------|------|------|-------------|------|
| Year of Production           | 2001  | 2002  | 2003  | 2004 | 2007 | 2010 | 2013 | 2016        | 2018 |
| DRAM 1/2 pitch [nm]          | 130   | 115   | 100   | 90   | 65   | 45   | 32   | 22          | 18   |
| MPU printed gate length [nm] | 90    | 75    | 65    | 53   | 35   | 25   | 18   | 13          | 10   |
| MPU etched gate length [nm]  | 65    | 53    | 45    | 37   | 25   | 18   | 13   | 9           | 7    |

From the 2003 International Technology Roadmap for Semiconductors (ITRS) for CD Metrology

Metrology techniques and physical standards with nanometer scale uncertainty are required to support

these specifications





# For length (or width) measurements the resolution of the measurement probe must be minimized or accounted for





#### **Optical Microscopy: Diffraction Limit**



#### **SEM Metrology: Line Broadening** due to Electron Mean Free Path

Secondary Electron Signal

Monte Carlo simulation of the electron beam interaction at the edge of a silicon line. The simulation yields the predicted "secondary" electron signal showing the offset of the peak of the signal relative to the edge.



M. Postek et al., J. Vac. Sci. Technol. B23, 3015 (2005)



 Probe microscopy has a short range interaction,
 < 1 nm, and under certain conditions is capable of measuring surfaces with atomic resolution





2.5 nm x 2.5 nm AFM image of sorbic acid molecule on graphite, measurement by T. Albrecht et al., in D. Rugar and P. Hansma, *Physics Today*, p. 20 (Oct. 1990).



## Conventional AFM versus Critical Dimension AFM (CD-AFM)



**Conventional AFM** 

**CD-AFM** 



SCCDRM Project (Single Crystal Critical Dimension Reference Materials)

•Fabricate chips with linewidth structures having vertical sidewalls and uniform linewidths using lattice plane selective etching.



•Linewidths range from 50 nm to 250 nm.

•Use CD-AFM as the transfer metrology for the distributed wafers.

•Calibrate the CD-AFM tip offsets with lattice plane counts from HRTEM (High-Resolution Transmission-Electron Microscopy) images.



#### Use of CD-AFM for Calibration of SCCDRM Linewidth Standards



#### **Example of CD-AFM Data**



## **Example of HRTEM Image**



#### **AFM/HRTEM Regression:**



National Institute of Standards and Technology

# **Distribution of AFM/HRTEM Offsets**



Final Offset and Expanded Uncertainty (k=2) : 1.03 nm +/- 0.58 nm (from weighted averaging of individual offsets)



## The SCCDRM



#### **Recommended Use of SCCDRM**



# How to Verify the Claimed Uncertainty?

# **Two Comparisons** with Independent Measurements

•Commercial Linewidth Standard, independently calibrated – R.D. Dixson & N.G. Orji, Proc. SPIE 6518, 651816 (2007).

•Annular Dark Field TEM (ADF-TEM), a different TEM method – N.G. Orji et al., Proc. SPIE, 6518, 651810 (2007).













Commercial Critical Dimension Standard (CCDS)

# **SCCDRM vs. CCDS Comparison**



Measurements performed using SXM320 in NIST/AML. R.G. Dixson & N.G. Orji, SPIE 6518 (2007) doi: 10.1117/12.714032

# HRTEM Annular Dark Field TEM







N.G. Orji et al. SPIE (2007)



# Summary: CD-AFM Linewidth Measurements

•Measurement of Transfer Specimens with both CD-AFM and HR-TEM provides calibration of CD-AFM tip widths and SCCDRMs

•SCCDRM chips with calibrated linewidths in pocket wafers were released to SEMATECH Member Companies in 2004.

• The final widths ranged from about 50 nm to 250 nm, with expanded uncertainties (k=2) typically ~ 2 nm.

• CD-AFM tip width calibration with 1 nm (k=1) uncertainty is now possible.

•The results agree with two sets of independent measurements

• Have Initiated a project to calibrate and distribute additional SCCDRMs as a Standard Reference Material



# Image Stitching Linewidth Measurement:

# Goal

# An independently traceable probebased method for measurement of linewidth





**AFM Image Stitching for Linewidth Measurement** 

AFM Cantilever Tip

Line to be Measured







AFM Image Stitching for Linewidth Measurement



#### **Generate Second Topographic Image of Rotated Line**



#### Form Composite Image from the Undistorted Data





#### SEM micrographs of multi-walled carbon nanotube tip used to collect images #1 and #2





**Side view** 

**Top view** 

NIST National Institute of Standards and Technology

# Linewidth Measurement Results (after nanotube radius correction)

| Nanoscope AFM       |          |          |             | CD-AFM   |             |          |          |
|---------------------|----------|----------|-------------|----------|-------------|----------|----------|
| Image Stitching     |          |          |             |          |             |          |          |
| Sample #1 Sample #2 |          |          | Sample      | e #1     | Sample #2   |          |          |
|                     |          |          | (using X3D) |          | (using SXM) |          |          |
| Тор                 | Bottom   | Тор      | Bottom      | Тор      | Bottom      | Тор      | Bottom   |
| 536.6 nm            | 579.9 nm | 574.9 nm | 593.2 nm    | 557.1 nm | 539.5 nm    | 577.5 nm | 554.8 nm |
|                     |          |          |             |          |             |          |          |



Preliminary Uncertainty Budget for Image Stitching Linewidth Measurement

Currently all components are type B

- Scale Calibration (1 %)
   7 nm
- Template Matching (3 pixels) 14 nm
- Nanotube Radius (10 % of 80 nm)
   8 nm
- Probe Compliance
   Quadratic Sum
- ±18 nm (k = 1)

3 nm

# **Contents:**

#### •The U.S. National Nanotechnology Initiative (NNI)

- -Goals
- -Activities
- -Organization...

#### Length Measurement in the NNI

#### •Probe-based Nano-scale Length Measurement

-Critical Dimension Atomic Force Microscopy (CD-AFM) of Linewidth

-Image Stitching Linewidth Measurement

-Si(111) Atomic Steps for Zcalibration of AFMs



# AFM image of silicon (111) atomic step specimen with native oxide



See N.G. Orji et al. Wear 257, 1264 (2004).



#### **Relation between miscut angle and average width of terraces**





Si(111) with 0.09° miscut

Si(111) with 0.015° miscut

Samples after heating in UHV reveal single atomic terraces, and the average width of the terraces is 0.314 nm/tan $\theta$ ,  $\theta$  the miscut angle.

#### Calibrated Atomic Force Microscope with AFM Sensor on Kinematic Mount





#### **Comparison of Silicon Step Height Results**



# Illustration of Step Height Calculation for a Single Profile



NIST National Institute of Standards and Technology

#### **Typical Area Selection for Step Height Analysis on Si (111)**

#### What is the expected variability for a user?





#### **Results of Industrial Measurement Comparison**

Five participants, including NIST (using Nanoscope 3, not C-AFM)

| Participant | Number of<br>Topo graphic<br>Images | Average<br>Step Height<br>Value<br>(pm) | One<br>Standard<br>Deviation<br>(pm) | Average Number<br>of Steps in<br>Each Image | Number of<br>Areas<br>Measured |
|-------------|-------------------------------------|-----------------------------------------|--------------------------------------|---------------------------------------------|--------------------------------|
| Α           | 7                                   | 325                                     | 12                                   | 6                                           | 268                            |
| В           | 9                                   | 302                                     | 8                                    | 4                                           | 90                             |
| С           | 10                                  | 317                                     | 4                                    | 7                                           | 100                            |
| D           | 4                                   | 306                                     | 3                                    | 6                                           | 180                            |
| Е           | 6                                   | 311                                     | 3                                    | 6                                           | 60                             |

#### Table I. Summary of Final Results for Silic on Step Height Samples

Reference: R. Dixson et al. SPIE Proc. 4344, 157 (2001)





#### Developed by ASTM SC E42.14, STM/AFM

Standard Practice for Calibrating the Z-Magnification of an Atomic Force Microscope at Subnanometer Displacement Levels Using Si (111) Monatomic Steps<sup>1</sup>







FIG. 1 Image of a Silicon Monatomic Stepped Surface



# **Observations**

•The structure of NNI provides for strong *coordination* among agencies with different missions

•Nanoscale length metrology plays an important role in the semiconductor industry and in particle based nanotechnology and will be important in the manufacture of many other nano-scale components and functional features

 Probe-based Microscopy is capable of nm uncertainties for width and pm-scale uncertainties for height of features on surfaces.

# **Probable Future Developments**

Probe-based microscopy to improve its capability for highresolution probing of soft structures



SEM image of Buckypaper, Chastek/Talbott NIST



A. Vladar, He ion microscopy of 60 nm gold

He ion microscope under development for nanoscale length measurement

