Femtosecond Laser Frequency Combs: The Gears of Optical Atomic Clocks

S. Diddams NIST, Boulder

What Makes a Clock?

Oscillator

+

Counting Mechanism

Earth Rotation Pendulum Quartz Crystal

Sundial Clock Gears/Hands Electronic Counter

What Makes a Clock?

Oscillator

÷

Counting Mechanism

Earth Rotation Pendulum Quartz Crystal

ATOMIC CLOCKS

Microwave Transition + Oscillator Optical Transition + Laser

Sundial Clock Gears/Hands Electronic Counter

Electronic Counter Femtosecond Laser

Types of Clocks

"Better"

		Primary Standard	Compact Atomic Clock	Precision Quartz Crystal	Wristwatch Quartz Crystal
Loses 1 sec. in: Size: Stability (1s): Cost:		10 ⁸ yrs 10 ⁷ cm ³ 10 ⁻¹³ \$1 M	1000 yrs 100 cm ³ 10 ⁻¹⁰ \$1,000	1 yr 1 cm ³ 10 ⁻¹¹ \$100	1 day 10 ⁻³ cm ³ 10 ⁻⁶ \$1
				"Smaller"	
	All atomic clocks have: •Reference atom •Local oscillator (pendulum) •Counter/gears			Figure: J	I. Kitching, (NIST)

Types of Clocks

"Better"

	Optical Clock	Primary Standard	Compact Atomic Clock	Precision Quartz Crystal	Wristwatch Quartz Crystal
Loses 1 sec. in: Size: Stability (1s): Cost:	10 ¹⁰ yrs?? laboratory 10 ⁻¹⁵	10 ⁸ yrs 10 ⁷ cm ³ 10 ⁻¹³ \$1 M	1000 yrs 100 cm ³ 10 ⁻¹⁰ \$1,000	1 yr 1 cm ³ 10 ⁻¹¹ \$100	1 day 10 ⁻³ cm ³ 10 ⁻⁶ \$1
	All atomic clocks have: •Reference atom •Local oscillator (pendulum) •Counter/gears		→ "Smaller" Figure: J	I. Kitching, (NIST)	

Why Measure Time/Frequency?

1. Frequency & time interval are the most accurately measured physical quantities

•Cesium fountain clock: ~3x10⁻¹⁶

•Define other quantities with respect to time/frequency (meter, kilogram??)

Figure from: Tony Jones "Splitting the second" IOP Publishing (2000).

Why Measure Time/Frequency..... (2)

- 2. Interesting physics
 - •Measurement and variation (?) of fundamental physical constants --speed of light, α , Rydberg constant)
 - •Tests of relativity, Lorentz invariance
 - Precision Spectroscopy
 - •Measurements & calculations for "simple" atoms (hydrogen and helium)
 - •Astrophysics: millisecond pulsars, very-long baseline observatories
- 3. Commercial and technological applications
 •Navigation (GPS), Radar
 •Communications, Network synchronization

The times they are a-changin'...

Nobel Laureates Contributing to Atomic Timekeeping

Year	Nobel Laureate	Contribution
1944	Isidor Rabi	Developed the "atomic beam resonance method" and proposed the cesium atomic clock
1955	Polykarp Kusch	Early practical design of cesium atomic clock
1964	Nikolai Basov, Aleksander Prochorov, Charles Townes	Masers and lasers
1966	Alfred Kastler	Optical pumping
1981	Nicolaas Bloembergen, Arthur Schawlow	Laser spectroscopy
1989	Norman Ramsey	Developed the "separated oscillatory fields method" and the hydrogen maser
1989	Hans Dehmelt, Wolfgang Paul	Single ion trapping and proposal of ion-based clocks
1997	Steve Chu, Claude Cohen- Tannoudji, Bill Phillips	Laser cooling and trapping
2005	Ted Haensch, John Hall	Precision frequency measurements & femtosecond laser comb

Tony Jones "Splitting the second" IOP Publishing (2000).

Cs Fountain Clock: The Current Standard and the Definition of the Second

*f*_{Cs}=9,192,631,770 Hz

Total Uncertainty ~3×10⁻¹⁶

Cold Atoms allow long interaction times

Optical Clocks

What are they?

 Atomic clocks based on optical transitions "tick period" ~ 1 femtosecond (10⁻¹⁵ s)

Why are they interesting?

• Optical standards have low instability:

$$\sigma(\tau) \sim \frac{\Delta f}{f_o \sqrt{N}} \frac{1}{\sqrt{\tau}}$$

e.g. Ca optical standard <2x10⁻¹⁶ at 1 s

 Optical standards have the potential for greatly improved accuracy: e.g. approaching 1x10⁻¹⁸

•Counter accumulates cycles to generate 1 sec

Oscillator (In)stability

 Freely expanding laser-cooled neutral atoms (e.g. Ca, Sr, H) high signal-to-noise troublesome Doppler effects limited interaction times (~ 10 ms)

F. Riehle, H. Katori, J. Hall, T. Hänsch

 Freely expanding laser-cooled neutral atoms (e.g. Ca, Sr, H) high signal-to-noise troublesome Doppler effects limited interaction times (~ 10 ms)

F. Riehle, H. Katori, J. Hall, T. Hänsch

2. Single trapped ions (e.g. Hg^+ , Yb^+ , Sr^+ , In^+ , Al^+)

Doppler-free long interaction times (high Q) limited signal-to-noise challenging technology

H. Dehmelt, D. Wineland

 Freely expanding laser-cooled neutral atoms (e.g. Ca, Sr, H) high signal-to-noise troublesome Doppler effects limited interaction times (~ 10 ms)

F. Riehle, H. Katori, J. Hall, T. Hänsch

42

H. Dehmelt, D. Wineland

H.Katori

- 2. Single trapped ions (e.g. Hg⁺, Yb⁺, Sr⁺, In⁺, Al⁺) Doppler-free long interaction times (high Q) limited signal-to-noise challenging technology
- 3. Neutral atoms held in an optical lattice (Yb, Sr, Hg)
 - good signal-to-noise Doppler-free long interaction times lattice shifts? (predicted to be 10⁻¹⁷ or less)

Single Ion Optical Clock

PHYSICS TODAY

SPECIAL FOCUS: CELEBRATING NIST'S CENTENNIAL

$^{199}\text{Hg}^{+}$ F=1 ${}^{2}P_{1/2}$ F=0 F=3 $^{2}D_{5/2}$ F=2Observe fluorescence "Clock" (l = 194 nm)Transition $(\lambda = 282 \text{ nm})$ F = 1 ${}^{2}S_{1/2}$ $\mathbf{F} = \mathbf{0}$ "clock" transition @

 $f_{0} \approx 1.06 \mathrm{x} 10^{15} \mathrm{Hz}$

J. Bergquist, et al. (NIST)

Jim Bergquist et al.

f_c + 10 Hz

•Counter accumulates cycles to generate 1 sec

NBS Laser Frequency Synthesis Chain (1979)

- K. M. Evenson
- D. A. Jennings
- J. S. Wells
- C. R. Pollock
- F. R. Petersen
- R. E. Drullinger
- E. C. Beaty
- J. L. Hall
- H. P. Layer
- B. L. Danielson
- G. W. Day
- R. L. Barger

Mechanical Analogy of the Optical Clock

The femtosecond mode-locked laser comb

Laser Cavity

The femtosecond mode-locked laser comb

The femtosecond mode-locked laser comb

GHz Repetition Rate Frequency Combs

A. Bartels, T. Fortier

• Control f_{rep} with PZT (cavity length)

A. Bartels, H Kurz, *Opt. Lett.* <u>27</u>, 1839 (2002) T. Fortier, A. Bartels, S. Diddams, *Opt. Lett.* <u>31</u>, 1011 (2006)

GHz Repetition Rate Frequency Combs

A. Bartels, T. Fortier

A. Bartels, C.W. Oates, L. Hollberg, S. Diddams, Opt. Lett. 29, 1081 (2004).

2006: Optical Standards Surpass Cesium

W. H. Oskay, et al. Phys. Rev. Lett. 97, 020801 (2006)

Hg⁺ ion (1 064 000 GHz) versus Cs fountain (9. 192 620 770 GHz)

Hg-Cs Comparison & Searches for "New Physics"

- Does the frequency ratio change in time? (time variation of α)
- Does the frequency ratio change in space? (Local Position Invariance)

Answer: Not within our measurement resolution

Th. Udem, et al. Phys. Rev. Lett. **86**, 4996 (2000) S. Bize, et al. Phys. Rev. Lett. **90** 150802 (2003) W. Oskay et al. *Phys. Rev. Lett.* **97**, 020801 (2006)

T. Fortier, et al. Phys. Rev. Lett. 98, 070801 (2007)

ne & Frequency

Atomic Standards in Boulder

- 5 optical standards, 2 microwave standards within ~3 km
- All connected by optical fibers or co-axial cable to the frequency comb
- Uncertainties $<1 \times 10^{-15}$ now routine and $\sim 3 \times 10^{-17}$ achieved with ions

$AI^+:Hg^+$

Single Hg-ion compared to the Al-ion quantum logic clock

Sciencexpress / www.sciencexpress.org / 6 March 2008 / Page 3 / 10.1126/science.1154622

Ratio of Al⁺ and Hg⁺ frequencies

$v_{Al} + v_{Hg}$ is 1.052871833148990438(55)

Uncertainty of ~5x10⁻¹⁷

Till Rosenband et al, Science, March 2008

 $\dot{\alpha} / \alpha = (-1.6 \pm 2.3) \times 10^{-17}$ / year

Many thanks to...

NIST Staff:

Jim Bergquist Steve Cundiff Bob Drullinger John Hall Tom Heavner Leo Hollberg Wayne Itano Steve Jefferts Nate Newbury Chris Oates Tom Parker Till Rosenband Dave Wineland Jun Ye

Students: Zeb Barber Dave Hume Stephanie Meyer Matt Kirchner Nathan Lemke Qudsia Quraishi

Tara Fortier Vladi Gergir Marie Jense Kyoungsik k

Vladi Gerginov Marie Jensen Kyoungsik Kim Lucca Lorini Long-Sheng Ma Vela Mbele Windell Oskay Nicola Poli Piet Schmidt Jason Stalnaker Shijun Xiao

Albrecht Bartels Danielle Braje

Anders Brusch

Post Docs & Visitors:

NIST, DARPA, ONR-CU-MURI, NASA, LANL

