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The quantum metrological triangle (QMT) experiment

By means of SET devices such as electron pumps,
a current standard with quantized amplitude is available : I=ef

The experiment originally proposed by K. Likharev and A. Zorin in 1985
consists of applying Ohm’s law, U = R [ directly to the quantities issued
from ac JE, QHE and SET.

U=n(h/2e)f

Josephson
effect

SET
effect

I =(e!/h)U




The QMT experiment

Another promising approach to close the triangle 1s to apply Q = CV

Charging a capacitor electron per electron with a pump
measuring the voltage drop with Josephson voltage standard,
calibrating the capacitance by means of OQHR standard

— Electron counting capacitance standard (ECCS)
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Aims of the QMT

mm)  To confirm with a very high accuracy that these three effects of
condensed matter physics give the free space values of constants 2e/A,

h/e? and e.
The ultimate target uncertainty is one part in 103

m If there 1s no deviation, our confidence on the three phenomena to
provide us with 2e/h, h/e? and e will be strengthened.

m If deviation occurs, some other works both experimental and
theoretical will have to be done.

m=)  To determine the elementary charge e or, in other words, the charge
quantum brought by the SET devices

mm)  Last but not least, to establish whether the SET can achieve a high level
quantization (ic one part in 108) in particular when the SET device is
connected to an external circuit.
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Quantum standards: universality and high reproducibility

® Test of the universality of relations involved in Josephson and quantum Hall effects:

U;/f andix Ry (i)  independent of materials

at a level of 2.10°10 1.10-10

J.S. Tsai et al — 1983 A. Hartland et al - 1991
B. Jeckelmann et al — 1995

JE: In microbridge and planar Nb/Cu/Nb junction QHE: GaAs/AlGaAs and Si-MOSFET
® Unique representation of the volt and the ohm:

The recent international comparisons of complete JE and QHE systems show a
high level of consistency: from a few 10-1! to a few 10~°.

These remarkable results do not prove that the phenomenological constants are
exactly 2e/h and h/e? but they strengthen our confidence in the equalities K; = 2¢e/h
and Ry = h/e? in addition to strong theoretical arguments.

If corrections exist, they will be probably of fundamental nature.
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Different uncertainty thresholds for closing the QMT (1)

® First critical test of validity for SET: Uncertainty of 1 ppm

Neither the JE nor the QHE 1s questionable at that uncertainty level

= recently completed by NIST with o= 9.2 parts in 107
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Different uncertainty thresholds for closing the QMT (2)

® Sccond uncertainty level lies between
7 parts in 107 and 2 parts in 108

= resulting information will be mainly relevant for the JE and
the SET

This comes from the present discrepant values of T’ ), 4, (l0) and V, (Si)
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Closing the triangle: first way U =R x |

As for JE, Ky = (2e/h)|;; and QHE, Ry = (h/e?)|gug, one can define
a phenomenological constant: Oy = €|

JE
w=» Dimensionless product to be measured [U —n Kj]fJ]

" Ry = h/e?
R K, Oy = 2| if: < K, =2e/h

/ LOx=e

Exactness ?!

m) R K,Q=nilG)(f/!fser) R I

DC

OHE SET
G = Np/Ng R =Ry /i 1= O

gain of the CCC
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r
m



Closing the triangle: second way Q=C x U

ECCS: Charging a capacitor electron per electron by a SET pump and
measuring the voltage drop with Josephson standard

=n Ky'f’

Crccs = K; Ox /[(nIN) f7)] [U JE ]

Ciecg compared to Cy calibrated by means
of QHR standard via quadrature bridge (RCw = 1)

Ry Ky Ox = (n/N)(Cgccs/Cx) (fy /fq) I

Quadrature bridge AC
OHE SET
C = il(2nf Ry N Oy

AN
| &
m



Determination of the charge quantum

Since a long time (1950’s), the evaluation of the elementary charge e, is
derived from a complex calculation and is no more related to an
experiment.

In the framework of the LSA by the CODATA (>1973), e is no more an

adjustable constant and its vaéue IS obtained from\ya%rglation giving o
HoC

Ko —>
— e —_
“ 2h/e?

CODATA 2006: ¢e=1.602 176 487 C and 6 =2.5 1078

a from a,, h/m and Ry (Calc. capacitor + QHE)
h via K*Ry (WB + QHE + JE)

To combine the three experiments QMT, calculable capacitor and watt balance

— a first determination of e involved in SET devices
without assuming that R, = A/e? and K; = 2e/h



Determination of the charge quantum

The watt balance provides the Sl value of the product K 2R

K??R, = A{f/(Mgv)}s, A, :dimensionless factor, f, : Josephson freq.
M: suspended mass, g : earth’s gravitational

accel.
v . constant speed of the moving coil within B.

The determination of R, from calculable capacitor to the QHR standard

Ry = A{(ACF ) "} A, : dimensionless factor
/, : frequency of the balanced quadrature bridge
AC: capacitance variation of the calc. capacitor

QMT, - g

Ry K0y = n(i/G)(f)/fsgr) = =AFUAC Mav) Hserhs)
OMT ,_ ¢y

R K0y = A,(n/N)(Cgres/ CO J/fq) :—Qfﬁ{&&@l\#@‘\#@ﬂz}r

- Piquemal et al., in Proc. of the international school of

[_f ) . physics “Enrico Fermi” 108 Press, 2007.
S L N E Ai d Imension IeSS faCtO rs - Keller et al., Metrologia, 2008



Determination of the charge quantum

Two direct values independent of the QHE and the JE

1.0
(e - ecopara2006) X 10° @ Direct value
® LSA&CODATA
0.8 1
— 3 172
, e=[o’A ()M /(n,R NI
0.6 / - A (e): 2006 CODATA
® 0. - M, : =107 kg.mol! exactly.
04 e d /| - R, : 2006 CODATA
' -a: <a,and himeg gy,
N, =N, =V_(S)(8d,,})
0.2 1
e conaTa 2006 = 1.602 176 487(40) 107'°C i Qx
0.0 w i ¢
1980 1985 1990 1995 2000 2005 L 2010 0, value from QMT
0.2
at NIST with ECCS
: _ c=0.9210°
Comparisons: Qy < e,
Ry < hle*, K; < 2elh
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Ill) Experimental set-up based on the CCC: U= RI

1) CCC: Cryogenic Current Comparator
2) Overall set-up at LNE
3) First results



Principle of the CCC

Harvey 1972

m) SQUID: Superconducting QUantum Interference Device:
very sensitive magnetic flux detector 6@ =~ few nd,/Hz!?

(typ.)
1
Iy > 1Y\ A
il Semaaien i A Y
I I 1\
RIS S o

Application of the Ampere’s law :

j(a)B'dl = 0=y, (;T5-))

[=I+,

Superconducting
shield

Supercurrent Secondary
winding NI
Nl -[1 2°2

ampere - turn balance : /=10

™

)

NI, = NI,

)




Experimental set-ups based on CCC

e CCC as current amplifier

Two detection levels: magnetic flux and voltage

Highly accurate gain: o < 10

SVIV = (I8P et (AKTIGPR )/ Pyt 8V2p/ V2 ~

251&K3C[ISE17
CCC (G =40 000): 3/ < 1 fA/Hz'2, ¢ =10 hours, 6_../I < 107 = > 60 pA

e CCC as current detector

Single detection level

SI/I = [4kTIR,,. )|/ Igxr

cryo)

Ruyo =100 MQ at 4.2 K: 6., /1 < 107 = [ > 80 pA
e in both cases: SQUID operates at 3® ~ 0 (Flux Locked Loop)
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Present status of U = Rl triangle experiments

Up to now, 2 laboratories have carried out measurement of current delivered
by a SET device with a CCC

1) NPL: SETSAW device
J.T. Janssen and A. Hartland, 2000 Standard uncertainty: 3 fA for 1 nA of current

2) LNE: 3-junctions R pump

From 2000 to 2006, with CCC in non accurate mode
B. Steck et al, Metrologia 08
Best Type A uncert.: 60 aA for 16 pA (3.9 ppm)

Since 2007, with CCC in accurate mode

B. Steck — N. Feltin et al, CPEM’ 08
Best Type A uncert.: 24 aA for 6 pA (4 ppm)

Towards a closure of the triangle via U = RI at 1 ppm next year !

10%0on 1 pA ==> 6 electrons per second !

)

~
!

»/ah-b

LNE

3
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Principle of the QMT set-up at LNE
10 MHz rubidium r
reference

DC SQUID B—

T@ source
Waveform Inm %
tor R out
genera .
@y INTFB
Flux L o

Transformer ! EXTFB %
),

B ‘ ; DAC based
— @ . Calibrated vy |
) 10k R/—T\ : | source
30 mK N, turns N, turns U/
Sl pump CCC Program.
INT FB: non accurate mode JAVS
% L= EXT FB: accurate mode



Results on 3-junctions R pump (SQUID in int FB)

- with PTB pump (@) B. Steck et al, Metrologia 2008
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Results on 3-junctions R pump (SQUID in int FB)

Two key issues:

- No real measurement of the flatness of the current step

- No 1dea of the quantization level !

= go to the accurate mode of the system involving
resistance calibrated in terms of Ry and the JAVS

with the target uncertainty of one part in 10°



Ox = (NY/N)(nfy/K; = V)/(fsgrR) =

15
1.6
1.7
-1.8-
1.9
2.0-
2.1
2.2
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2.4
25-

Aele (*107)

Data recently measured at LNE (SQUID in ext FB)

10

MHz ;=5

u.=710°

/

mecan

0

1 2 3 4 5 6
Number of measurement

foer=23.55|

7

8 9
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QMT : very first measurement of flatness

Jfsgr=137.69 MHz and n,=5 f=73 GHz

V= center of the plateau

1
] . VbO

o V.=V, 154V Vi=V,-15 nv

plateau

Aele (*107°)

f=75MHz

f=60 MHz

f=50 MHz

f=25 MHz

o 1 3 3 i 5 & 7 Lo —7/

Number of measurement

Long time measurements performed with various bias
voltages 1n order to check the flatness of current steps

= The plateau is flat within one part in 10°
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IV- Conclusion (1)

e Technical and technological challenges

e Development of CCC as current amplifier

e Development of single charge transport devices as
current source with />> 1 pA
Growing number of new devices, some are very promising
e.g. - Hybrid SINIS SET turnstile (Pekola et al.)

- electron pump based on silicon nanowire (Blumenthal et al.)

= Current plateaux observed at a level 100 pA

e Improvement of metrology relative to ultra low
amplitude of current (< 1 nA)

r
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IV- Conclusion (2)

e Possible contributions

e to test and hopefully to enhance our confidence on QHE, JE
and SET to provide h/e?, 2e/h and e

e to improve knowledge on fundamental constants, in particular
the elementary charge

— This direct determination of e via QMT, calculable capacitor
and watt balance links up with the historical experiment of
Millikan, early last century

e to give some elements of thought about a redefinition of
electrical units and a revision of the SI

: ?ﬁ“;ﬁ
1l
m



Impact of electrical constants in Metrology

Current <1nA

10 pF

Capacitance

e Lampard @

2elh h/e? _)@

Oto 10V ) 1 Qto1 MQ
Potential difference Resistance
|
Mass | lkg
! For a revised SI with
> 104 fixed values of 4 and e
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Cross calculable capacitance standard

Theorem of A. Thompson and D. Lampard (1956): -
For a cylindrical system of 4 isolated electrodes
of infinite length and placed in vacuum,

exp(-m v,5/€,) + exp(-m y,,/€,) = 1

In the case of a perfect symmetry with identical y;

Yiz = You =¥ = (g,In2)/m = 1.953 549 043 ... pF/m = AC =vyAL

. METRE
LNE, five-electrodes capacitor Calculable

capacitor

C
T Quadratare ridge

LNE-2000, R =25 812.808 1(14) Q2




Josephson voltage standards Brian Josephson 1962

Quantum effects occurring between two superconducting electrodes ®

separated by a small region where the superconductivity 1s weakened:
thin insulating film

. Microwave I S . . . . .
-1 radiation S, P N
xide layer

10 V Josephson junction arrays

-~ I(mA)

1 2 3 4

8
T
B
-
o
as
.+ N

K, = 2e/h, the Josephson constant Steps around 10 V

*;'i LN — Programmable arrays for DC and AC applications
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Quantum Hall resistance standards Klaus von Klitzing, 1980
4

At low temperature and under high magnetic field,
the Hall resistance of the 2DEG exhibits plateaux centred
on quantized values:

Ry, (i) = hlie* = R /i, where i is an integer,
Ry the von Klitzing constant.

20000 4000

15000 3000
d a
=, 10000 2000 jp;
= .:.:'

3000 1 00

LEP 514 Hall bar sample
. . GaAs/AlGaAs heterostructure
] 2 4 & by L 12
BT



F,=mg=-10D/0z = - 00/0t = -0®/0z v

Equivalence between mechanical and electrical power = F,v=¢l = mgv = €V/R

- ¢ and V in terms of Josephson effect: € = nf|/K;, V = nzfz/KJ} A
=
- R in terms of quantum Hall effect: R = Ry /i

where 4 = n,f, n,f,i
, assuming K; = 2e/h and Ry = h/e?

7 Towards a redefinition of the kilogram
A Q in term of the Planck constant /2 ?/




Single electron tunneling: towards quantum current standard

<n> Coulomb staircase '
Electron box o : ]
Coulomb Blockade of —

Tunnel . y

G [/ junction the tunneling events i

—_ 1.0 r
+ i \
’\______ ______ ; 4=Qc-Q=ne cotie
Co | ™. Gate - Thermal fluctuations of n are negligible if kT << €%/C;

it : -
CApRETe - Quantum fluctuations of n negligible when R, >> Ry

The wave function of electron in excess on the island is well localised

3-junctions electron pump

e raNSIStOF Two modulation signals )
....’ ‘x"‘""‘: a t frequency f 9

| . = phase-shifted by @ =n/2
IT LT ¢ 1:: C,
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