

Laboratoire national de métrologie et d'essais

Triangle of enchiladas

Quantum metrology triangle and determination of the charge quantum François Piquemal

The permanent team for the QMT project at the LNE

SET&CCC:	Laurent Devoille, Nicolas Feltin,
QHE:	Wilfrid Poirier, Félicien Schopfer
JE:	Sophie Djordjevic, Olivier Séron

Former and present PhD students & postdocs :

F. Gay, Y. De Wilde, B. Steck, A. Gonzalez Cano, B. Chenaud, S. Sassine

Collaboration

CEA-Saclay & Grenoble, LPN/CNRS Marcoussis, PTB Braunschweig&Berlin

iMERA+ project REUNIAM: LNE, METAS, MIKES, NMi/VSL, NPL, PTB

OUTLINE

I) Introduction

Fundamental electrical metrology
Aims of the QMT

II) Arguments for closing the triangle

1) Uncertainty thresholds

2) Determination of the charge quantum

III) Experimental set-up based on the CCC: *U* = *RI*

1) CCC: Cryogenic Current Comparator

2) Overall set-up at LNE

3) First results

IV) Conclusion

The quantum metrological triangle (QMT) experiment

By means of SET devices such as electron pumps, a current standard with **quantized** amplitude is available :

The experiment originally proposed by *K*. *Likharev and A*. *Zorin in 1985* consists of applying Ohm's law, U = R I directly to the quantities issued from ac JE, QHE and SET.

l = e t

The QMT experiment

Another promising approach to close the triangle is to apply Q = CV

Charging a capacitor electron per electron with a pump measuring the voltage drop with Josephson voltage standard, calibrating the capacitance by means of QHR standard

 \Rightarrow Electron counting capacitance standard (ECCS)

Aims of the QMT

To confirm with a very high accuracy that these three effects of condensed matter physics give the **free space** values of constants 2e/h, h/e^2 and e.

The ultimate target uncertainty is **one part in 10**⁸

If there is no deviation, our confidence on the three phenomena to provide us with 2e/h, h/e^2 and e will be strengthened.

■ If deviation occurs, some other works both experimental and theoretical will have to be done.

To determine the elementary charge *e* or, in other words, the charge quantum brought by the SET devices

Last but not least, to establish whether the SET can achieve a high level quantization (ie **one part in 10**⁸) in particular when the SET device is connected to an external circuit.

OUTLINE

I) Introduction

Fundamental electrical metrology
Aims of the QMT

II) Arguments for closing the triangle

Uncertainty thresholds
Determination of the charge quantum

III) Experimental set-up based on the CCC: *U* = *RI*

1) CCC: Cryogenic Current Comparator

2) Overall set-up at LNE

3) First results

IV) Conclusion

Quantum standards: universality and high reproducibility

• Test of the universality of relations involved in Josephson and quantum Hall effects:

JE: In microbridge and planar Nb/Cu/Nb junction

QHE: GaAs/AlGaAs and Si-MOSFET

Unique representation of the volt and the ohm:

The recent international comparisons of complete JE and QHE systems show a high level of consistency: from a few 10^{-11} to a few 10^{-9} .

These remarkable results do not prove that the phenomenological constants are exactly 2e/h and h/e^2 but they strengthen our confidence in the equalities $K_J = 2e/h$ and $R_K = h/e^2$ in addition to strong theoretical arguments. If corrections exist, they will be probably of fundamental nature. Different uncertainty thresholds for closing the QMT (1)

• First critical test of validity for SET: Uncertainty of **1 ppm**

Neither the JE nor the QHE is questionable at that uncertainty level

 \Rightarrow recently completed by NIST with $\sigma = 9.2$ parts in 10⁷

Different uncertainty thresholds for closing the QMT (2)

Second uncertainty level lies between

7 parts in 10⁷ and 2 parts in 10⁸

 \Rightarrow resulting information will be mainly relevant for the JE and the SET

This comes from the present discrepant values of $\Gamma'_{p h-90}$ (lo) and $V_{m}(Si)$

P. Mohr, B.N. Taylor, D.B. Newell, Rev of Mod Phys., vol.80, 2008

Closing the triangle: first way $U = R \times I$

As for JE, $K_J = (2e/h)|_{JE}$ and QHE, $R_K = (h/e^2)|_{QHE}$, one can define a phenomenological constant: $Q_X = e|_{SET}$

Closing the triangle: second way $Q = C \times U$

ECCS: Charging a capacitor electron per electron by a SET pump and measuring the voltage drop with Josephson standard

Determination of the charge quantum

Since a long time (1950's), the evaluation of the elementary charge *e*, is derived from a complex calculation and is no more related to an experiment.

In the framework of the LSA by the CODATA (>1973), **e** is no more an adjustable constant and its value is obtained from the relation giving α : $\alpha = \frac{\mu_0 c}{2h/e^2} \qquad e = \sqrt{\frac{2\alpha h}{\mu_0 c}}$

CODATA 2006: $e = 1.602 \ 176 \ 487 \ C$ and $\sigma = 2.5 \ 10^{-8}$

 α from $a_{\rm e}$, h/m and $R_{\rm K}$ (Calc. capacitor + QHE)

 $h via K_J^2 R_K$ (WB + QHE + JE)

To combine the three experiments QMT, calculable capacitor and watt balance

 \Rightarrow a first determination of *e* involved in SET devices without assuming that $R_{\rm K} = h/e^2$ and $K_{\rm J} = 2e/h$

Determination of the charge quantum

The watt balance provides the SI value of the product $K_{\mu}^2 R_{\kappa}$

accel.

 $K_{J}^{2}R_{K} = A_{1}\{f_{J}^{2}/(Mgv)\}_{SI}$ A_{1} : dimensionless factor, f_{J} : Josephson freq. M: suspended mass, g: earth's gravitational

v : constant speed of the moving coil within B.

The determination of R_{κ} from calculable capacitor to the QHR standard

 $R_{\rm K} = A_2 \{ (\Delta C f_{\rm q})^{-1} \}_{\rm SI}$ A_2 : dimensionless factor $f_{\rm q}$: frequency of the balanced quadrature bridge ΔC : capacitance variation of the calc. capacitor

 $QMT_{II=RI}$

 $R_{\rm K}K_{\rm I}Q_{\rm X} = n(i/G)(f_{\rm I}/f_{\rm SFT})$

$$\Rightarrow Q_{X} = A_{3} \{ (\Delta Cf_{g} Mgv)^{1/2} / f_{SFT} \}_{S}$$

 $QMT_{O=CV}$

$$R_{\rm K}K_{\rm J}Q_{\rm X} = A_4(n/N)(C_{\rm ECCS}/C_{\rm X})(f_{\rm J}/f_{\rm q}) \Rightarrow Q_{\rm X} = A_5\{(\Delta CMgv/f_{\rm q})^{1/2}\}_{\rm SI}$$

 A_{i} dimensionless factors

- Piquemal et al., in Proc. of the international school of physics "Enrico Fermi" IOS Press, 2007. - Keller et al., Metrologia, 2008

Determination of the charge quantum

Two direct values independent of the QHE and the JE

 $\widetilde{R}_{\rm K} \Leftrightarrow h/e^2, K_{\rm J} \Leftrightarrow 2e/h$

OUTLINE

I) Introduction

1) Fundamental electrical metrology

2) Aims of the QMT

II) Arguments for closing the triangle

Uncertainty thresholds
Determination of the charge quantum

III) Experimental set-up based on the CCC: *U* = *RI*

CCC: Cryogenic Current Comparator
Overall set-up at LNE
First results

IV) Conclusion

Experimental set-ups based on CCC

• CCC as current amplifier

Two detection levels: magnetic flux and voltage

Highly accurate gain: $\sigma_G < 10^{-9}$

 $\frac{\delta V/V = ([\delta I^2_{\text{CCC}} + (4kT/G^2R_{\text{H}})]/I^2_{\text{SET}} + \delta V^2_{\text{ND}}/V^2)^{1/2} \approx}{\delta I_{\text{CCC}}/I_{\text{SET}}}$ $\frac{\delta I_{\text{CCC}}/I_{\text{SET}}}{\text{CCC} (G = 40\ 000): \delta I < 1\ \text{fA}/\text{Hz}^{1/2}, t_{\text{meas}} = 10\ \text{hours}, \sigma_{<\text{I}>}/I < 10^{-7} \Rightarrow I > 60\ \text{pA}}$

• CCC as current detector

Single detection level

 $\delta I/I = [4kT/R_{\rm cryo})]^{1/2}/I_{\rm SET}$

 $R_{\rm cryo} = 100 \text{ M}\Omega \text{ at } 4.2 \text{ K}: \sigma_{<\rm I>}/I < 10^{-7} \Longrightarrow I > 80 \text{ pA}$

• in both cases: SQUID operates at $\delta \Phi \approx 0$ (Flux Locked Loop)

Present status of *U* **=***RI* **triangle experiments**

Up to now, 2 laboratories have carried out measurement of current delivered by a SET device with a CCC

1) NPL: SETSAW device

J.T. Janssen and A. Hartland, 2000

Standard uncertainty: 3 fA for 1 nA of current

2) LNE: 3-junctions R pump

From 2000 to 2006, with CCC in **non accurate** mode B. Steck *et al*, Metrologia 08

Best Type A uncert.: 60 aA for 16 pA (3.9 ppm)

Since 2007, with CCC in **accurate** mode B. Steck – N. Feltin *et al*, CPEM' 08

Best Type A uncert.: 24 aA for 6 pA (4 ppm)

Towards a closure of the triangle via U = RI *at 1 ppm next year !*

 $10^{-6} \text{ on } 1 \text{ pA} \implies 6 \text{ electrons per second } !$

Principle of the QMT set-up at LNE

Results on 3-junctions R pump (SQUID in int FB)

- with PTB pump

Zorin et al., 2000

B. Steck et al, Metrologia 2008

- with pump from LPN

(Laboratoire de Photonique et de Nanostructure)

Two key issues:

- No real measurement of the flatness of the current step
- No idea of the quantization level !

 \Rightarrow go to the accurate mode of the system involving resistance calibrated in terms of $R_{\rm K}$ and the JAVS with the target uncertainty of one part in 10⁶

Data recently measured at LNE (SQUID in ext FB)

#

QMT : very first measurement of flatness

Long time measurements performed with various bias voltages in order to check the flatness of current steps

 \Rightarrow The plateau is flat within one part in 10^5

• Technical and technological challenges

• Development of CCC as current amplifier

 Development of single charge transport devices as current source with *I* >> 1 pA Growing number of new devices, some are very promising *e.g.* - Hybrid SINIS SET turnstile (Pekola *et al.*)

- electron pump based on silicon nanowire (Blumenthal *et al.*)

 \Rightarrow Current plateaux observed at a level 100 pA

• Improvement of metrology relative to ultra low amplitude of current (< 1 nA)

IV- Conclusion (2)

• Possible contributions

• to test and hopefully to enhance our confidence on QHE, JE and SET to provide h/e^2 , 2e/h and e

• to improve knowledge on fundamental constants, in particular the **elementary charge**

 \Rightarrow This direct determination of *e via* QMT, calculable capacitor and watt balance links up with the historical experiment of Millikan, early last century

• to give some elements of thought about a redefinition of electrical units and a revision of the SI

Impact of electrical constants in Metrology

Muchas gracias!

Cross calculable capacitance standard

Theorem of A. Thompson and D. Lampard (1956): For a **cylindrical** system of 4 **isolated** electrodes of **infinite** length and **placed in vacuum**,

 $\exp(-\pi \gamma_{13}/\varepsilon_0) + \exp(-\pi \gamma_{24}/\varepsilon_0) = 1$

In the case of a **perfect** symmetry with **identica**l γ_{ij}

 $\gamma_{13} = \gamma_{24} = \gamma = (\epsilon_0 \ln 2)/\pi = 1.953\ 549\ 043\ \dots\ pF/m$

$$\Delta \boldsymbol{C} = \boldsymbol{\gamma} \Delta \boldsymbol{L}$$

LNE-2000, $R_{\rm K} = 25\ 812.808\ 1(14)\ \Omega$

Josephson voltage standards

Quantum effects occurring between two superconducting electrodes separated by a small region where the superconductivity is weakened: *thin insulating film*

 \Rightarrow Programmable arrays for DC and AC applications

Quantum Hall resistance standards

Klaus von Klitzing, 1980

At low temperature and under high magnetic field, the Hall resistance of the 2DEG exhibits plateaux centred on quantized values:

> $R_{\rm H}(i) = h/ie^2 = R_{\rm K}/i$, where *i* is an integer, $R_{\rm K}$ the von Klitzing constant.

LEP 514 Hall bar sample GaAs/AlGaAs heterostructure

 \Rightarrow Arrays of Hall bars for scaling up to 1.29 MO and down to 100 Ω

Equivalence between mechanical and electrical power $\Rightarrow F_z v = \varepsilon I \Rightarrow \frac{mgv}{mgv} = \varepsilon V/R$

- ε and *V* in terms of Josephson effect: $\varepsilon = n_1 f_1 / K_J$, $V = n_2 f_2 / K_J$
- *R* in terms of quantum Hall effect: $R = R_{\rm K}/i$

$$\Rightarrow mgv = \frac{A}{K^2_J R_K}$$

where $A = n_1 f_1 n_2 f_2 i$

$$\Rightarrow \quad m = h \frac{A}{4gv} \quad \text{, assuming } K_{\text{J}} = 2e/h \text{ and } R_{\text{K}} = h/e^2$$

Towards a redefinition of the kilogram in term of the Planck constant *h* ?!

Single electron tunneling: towards quantum current standard

Electron box

Coulomb Blockade of

the tunneling events

when $n - 1/2 < C_{\rm G}U/e < n + 1/2$

- Thermal fluctuations of *n* are negligible if $k_{\rm B}T \ll e^2/C_{\rm i}$ - Quantum fluctuations of *n* negligible when $R_{\rm i} \gg R_{\rm K}$

The wave function of electron in excess on the island is well localised

3-junctions electron pump

Two modulation signals at frequency fphase-shifted by $\Phi = \pi/2$

$$\Rightarrow I = e \times f$$

Minimum energy states of the pump As a function of U_1 and U_2

AnimPompe.exe

For $f = 100 \text{ MHz} \Rightarrow I = 16 \text{ pA}$