

CENTRO NACIONAL DE METROLOGÍA

SIMPOSIO

METROLOGÍA 2008

OCTUBRE 2008

QUERETARO QRO

DEPARTAMENTO DE METROLOGÍA DE RADIACIONES IONIZANTES ININ

RESULTADOS DEL ININ EN LAS COMPARACIONES SIM.RI(I)-K₄ PARA DOSIS ABSORBIDA EN AGUA Y SIM.RI(I)-K₁ PARA KERMA EN AIRE EN HACES DE ⁶°CO.

VICTOR TOVAR MUÑOZ JOSÉ ALVAREZ ROMERO

DEPARTAMENTO DE METROLOGÍA DE RADIACIONES IONIZANTES

ININ

SISTEMA INTERNACIONAL DE MEDIDAS PARA DOSIMETRÍA DE RADIACIONES IONIZANTES

SALA DE CALIBRACIÓN PARA LA MAGNITUD DE Kerma en aire K_a

SALA DE CALIBRACIÓN EN LA MAGNITUD DE DOSIS ABSORBIDA EN AGUA N_{D,W} Co-60

CALIBRACIÓN DE DETECTORES DE PROTECCIÓN RADIOLÓGICA Co-60 y Cs-137

PATRÓN NACIONAL DOSIS ABSORBIDA BETA CÁMARA EXTRAPOLACIÓN

SALA DE CALIBRACIÓN EN RAYOS-X PARA LA MAGNITUD DE Kerma en Aire K_a

SALA DE RATOS-X PARA RADIOLOGÍA CONVENCIONAL

SALA DE RAYOS-X PARA MAMOGRAFÍA

Signatories on 14 October 1999

at the meeting of directors of National Metrology Institutes

of Member States of the Metre Convention

Liste des signataires

de l'arrangement de reconnaissance mutuelle

List of the signatories of the Mutual Recognition Arrangement

Les noms et sigles des instituts sont suivis en italique

par les noms et sigles

des autres instituts du même pays qui participent à l'arrangement

The names and acronyms of the institutes are followed in italics

by the names and acronyms

of other institutes from that country participating in the MRA

talie

Sigfrido LESCHIUTTA, President, Istituto Elettrotecnico Nazionale "Galileo Ferraris", IEN, Turin Consiglio Nazionale delle Ricerche - Istituto di Metrologia "G. Colonnetti", CNR-IMGC, Turin Istituto Nazionale di Metrologia delle Radiazioni Ionizzanti, ENEA-INMRI, Rome

Japon

Japan

Hidetaka IMAI, Director General, National Research Laboratory of Metrology, NRLM, Tsukuba, now the National Metrology Institute of Japan (NMIJ), AIST (incorporating the former National Research Laboratory of Metrology, NRLM, the National Institute of Material and Chemical Research, NIMC, Tsukuba and the Electrotechnical Laboratory, ETL, Tsukuba) National Institute of Information and Communications Technology, NICT, Tokyo Chemicals Evaluation and Research Institute, CERI, Tokyo

Mexique

Onéretara

Mexico

Héctor NAVA-JAIMES, Director General, Centro Nacional de Metrología, CENAM,

Instituto Nacional de Investigaciones Nucleares, ININ, México

Apendice C

 Calibración y Capacidades de Medida de Institutos Nacionales de Metrología

Es parte de la base de datos de comparaciones del BIPM, Apendice C del MRA. Incluye las Capacidades de Calibración de Medidas (CMCs) declaradas por los NMI y los Institutos Declarados

	Calibration or Measurement Service			Measurement Conditions/Independent Variable				Expanded Uncertainty			Reference Standard used in calibration		Comparisons supporting this measurement/ calibration service	Services Administratio		ninistration			
Qı	Jantity	Instrument or Artifact	Instrument Type or Method	Minimum value	Maximum value	Units	Parameter	Specifications	Value	Units	Coverage factor	Level of Confidence	Standard	Source of traceability		NMI Service Identification	Service Category	NMI	Comments
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
Air ke	erma rate	lonization chambers or other dose-rate instruments in special test	Calibration against a transfer standard in air	0.00054	0.00136	Gy s ⁻¹	Co-60	Activity source 6000 MBq, field size 10 x 10 cm, distance from the source 1 m.	1.8	%	2		Secondary standard ionization chamber PTW- 30001	IAEA		SIM-RAD- ININ-1001	1.6.7	ININ	
Absort rate	bed dose to water	lonization chambers for therapy level dosemeters	Calibration against a transfer standard in water phantom	0.000013	0.000019	Gy s ⁻¹	Co-60	Activity source 6000 MBq, 5 mm depth, field size 10 x 10 cm, distance from the source 1 m.	2.1	%	2		Secondary standard ionization chamber PTW- 30001	IAEA		SIM-RAD- ININ-1002	1.2.7	ININ	
Air ke	erma rate	lonization chambers or other dose-rate instruments in special test	Calibration against a transfer standard in air	0.000010	0.000080	Gy s ⁻¹	Cs-137	Activity source 22 TBq, field size 8 x 6 cm, distance from the source 1 m	2.1	%	2		Secondary standard ionization chamber NE- 2611	NIST		SIM-RAD- ININ-1003	1.6.8	ININ	
Air ke	erma rate	lonization chambers or other dose-rate instruments in special test	Calibration against a transfer standard in air	0.000795	0.000651	Gy s ⁻¹	X-ray 50 kV to 100 kV	Mean photon energy from 24 to 42 keV, distance 1 m, field size 10 cm diameter, Current 10 mA, homogeinity coeficients from 0.67 to 0.72	3.0	%	2		Secondary standard ionization chamber NE- 2611	NIST		SIM-RAD- ININ-1004	1.6.5	ININ	
Absor rate	bed dose to water	Planar Sr-90/Y- 90, ophthalmic applicators	Calibration against national standard, for surface	0.0300	1.0000	Gy s⁻¹	Beta radiation (Sr- 90/Y-90)	Sr-90/Y-90 Activity source 925 MBq June- 1994, contact calibration	1.5	%	2		Extrapolation chamber	ININ	Health Physics,vol.68, pp 234-252,(1995)	SIM-RAD- ININ-1005	1.2.3	ININ	
Perso equiva sup	onal dose alent rate, erficial	Extrapolation chambers, dose meters	Calibrations against national standard	0.00460	1.80	Sv h ⁻¹	Beta radiation (Sr- 90/Y-90)	Activity source 74 MBq to 1850 MBq july- 1986, distance 30 cm to 11 cm.	1.8	%	2		Extrapolation chamber	ININ		SIM-RAD- ININ-1006	1.11.3	ININ	
Perso equiva sup	onal dose alent rate, erficial	Extrapolation chambers, dosimeter	Calibrations against national standard	0.001	0.001	Sv h ⁻¹	Beta radiation (TI- 204)	Activity source 18.5 MBq june 1986, distance 30 cm	22.0	%	2		Extrapolation chamber	ININ		SIM-RAD- ININ-1007	1.11.3	ININ	
Refer kerr	rence air na rate	Cs-137 brachytherapy source	Calibration in air with secondary transfer standard well ionization chamber	0.000001	0.000200	Gy m ² h ⁻¹	Cs-137	Activity source 1.91 GBq (Amersham model CDSM4), cm march1997, distance 4 cm in the well chamber	2.4	%	2		Cs-137 Brachytherapy gamma ray source	ADCL (University of Wisconsin)		SIM-RAD- ININ-1008	1.7.8	ININ	
Perso equiva penet 10 m	onal dose alent rate trating (in m depth)	Personal dosimeter	Irradiation in a calibrated field with secondary standard	0.00660	0.117	Sv h ⁻¹	Cs-137	Activity source ¹³⁷ Cs (ISO- 4037-3), distance from 2 m to 8 m	4.0	%	2		Secondary standard ionization chamber PTW- T34035	РТВ		SIM-RAD- ININ-1009	1.10.8	ININ	
Perso equ pen	onal dose iivalent etrating	Personal dosimeter TLD	Calibration against a transfer standard free in air	0.0360	0.3600	Svh ⁻¹	X-ray 50kV to 100 kV	Field radiation 30 x 30 cm, distance 3.5 m, courrent 1 mA, time 1 min.	10.0	%	2		Secondary standard ionization chamber PTW- T34035	РТВ		SIM-RAD- ININ-1010	1.10.5	ININ	
Perso equ pen	onal dose ivalent, etrating	Personal dosimeter TLD	Calibration against a transfer standard free in air	0.0067	0.117	Sv h ⁻¹	Cs-137	Activity source ¹³⁷ Cs (ISO- 4037-3), distance 2m to 8 m	4.0	%	2		Secondary standard ionization chamber PTW- T34035	РТВ		SIM-RAD- ININ-1011	1.10.8	ININ	

Neutrons declared CMCs

Calibration or Measurement Service		ent Service	Measurand Level or Range			Measurement Conditions/Independent Variable		Expanded Uncertainty				Reference Standard used in calibration		Comparisons supporting this measurement/ calibration service		Services /	Administratio	n
Quantity	Instrument or Artifact	Instrument Type or Method	Minimum value	Maximum value	Units	Parameter	Specifications	Value	Units	Coverage factor	Level of Confidence	Standard	Source of traceability		NMI Service Identification	Service Category	NMI	Comments
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
Personal dose equivalent rate	Neutron dosimeter	Irradiation with calibrated neutron sources on a phantom	5.0E-05	3.0E-03	Sv h-1	Neutron spectrum at distance 0.3 to 1.0m	Am-241/Be-9 ISO 8529-3	10.0	%	2		Calibrated neutron source Amersham Int.PLC X4	NPL		SIM-RAD- ININ-3001	3.8.7	ININ	Radiation Protection Dosimetry, vol. 4, p 239-251 (1984); and LA- 3595, UC, Instruments, TID-4500 "Modified- Sphere Neutron Detector" (1967)

APROBACIÓN DEL SISTEMA DE CALIDAD PARA CALIBRACIÓN Y MEDIDAS EN DOSIMETRÍA EN SIM COMITE INTERNACIONAL DE PESAS Y MEDIDAS (CIPM) OFICINA INTERNACIONAL DE PESAS Y MEDIDAS (BIPM)

Certificate of Approval

The Quality System of

Instituto Nacional de Investigaciones Nucleares (Mexico)

in support of Calibration and Measurement Capabilities for Dosimetry

was approved within the framework of the CIPM Mutual Recognition Arrangement by the SIM Quality System Task Force on Thursday, September 27, 2007

Humberto S. Brandi President, SIM

William E. Anderson Chair, SIM QSTF

DEPARTAMENTO DE METROLOGÍA DE RADIACIONES IONIZANTES ININ

RESULTADOS DEL ININ EN LAS COMPARACIONES SIM.RI(I)-K₄ PARA DOSIS ABSORBIDA EN AGUA Y SIM.RI(I)-K₁ PARA KERMA EN AIRE EN HACES DE ⁶°CO.

RESUMEN

- Se comparan los patrones de kerma en aire K_a y dosis absorbida en agua D_W para haces de ⁶°Co, con la participación de los laboratorios:
- CNEA Argentina,
- ININ México,
- IRD Brasil,
- IVIC Venezuela;
- NIST USA
- NRC Canadá (laboratorio piloto),
- OIEA VIENA
- Pertenecientes al Sistema Interamericano de Metrología SIM;, mediante una comparación indirecta que consiste en la determinación de coeficientes de calibración y su incertidumbre combinada de tres cámaras de transferencia Exradin A12.
- Comparaciones anteriores de los patrones primarios del NRC y NIST con la Oficina Internacional de Pesas y Medidas BIPM, y los resultados de estas comparaciones del SIM se relacionan con los valores de referencia de las claves de comparación KCRV determinados por el BIPM; los indicadores empleados en esta última parte son el grado de equivalencia D y su incertidumbre combinada u_c .

INTRODUCCIÓN

- El empleo de las radiaciones ionizantes en la medicina para el tratamiento de tumores malignos (cancer) en radioterapia RT, para el control del tumor tiene, la restricción de que la dosis absorbida en el volumen tumoral D_T debe ser impartida con una incertidumbre expandida U(k=2)≤ 5%, para incrementar las posibilidades de éxito del tratamiento.
- Esta limitante ha conducido al desarrollo de patrones primarios en términos de la magnitud de dosis absorbida en agua D_W para sustituir a los patrones de kerma en aire K_a, con el objetivo de disminuir la U en las calibraciones de los haces externos de radiación utilizados en centros hospitalarios de RT, y así disminuir la U de la D_T impartida al tumor.

PROBLEMAS A RESOLVER A TRAVES DE LABORATORIOS DE REFERENCIA

• Los centros de RT en los hospitales deben cambiar su trazabilidad de patrones de Ka a patrones de D_W , mediante el cambio del protocolo de calibración de los haces de RT, por ejemplo, utilizando los protocolos del OIEA,TRS - 277 al TRS -398, o de los protocolos de la AAPM (USA) del TG - 21 al TG - 51.

• Los laboratorios secundarios de calibración dosimétrica LSCD deben brindar calibraciones de las cámaras de ionización-- empleadas a su vez en la calibración de los haces de los equipos de teleterapia (⁶⁰Co y aceleradores lineales) en centros de RT-- en términos de D_W , con trazabilidad a patrones.

ESQUEMA DE LA COMPARACIÓN

- En la comparación se emplean tres cámaras de ionización Exradin A12 series 101, 149 y 150. No se suministran electrómetros, por lo que cada laboratorio es responsable de la trazabilidad de sus medidas en carga o corriente.
- Las cámaras de ionización son expuestas a radiación gamma de Co-6o, para la determinación de los <u>coeficientes de calibración</u> N_{Ka}, y N_{DW}, <u>los</u> <u>cuales sirven de base para la comparación.</u>
- Las cámaras se circularon entre los laboratorios participantes, para verificar la estabilidad de las cámaras, de acuerdo al siguiente esquema.

ESQUEMA DE CIRCULACIÓN DE LAS CÁMARAS DE IONIZACIÓN

COMPARACIÓN A TRAVES DE LOS COEFICIENTES DE CALIBRACIÓN N_{Ka} y N_{D,W}

• Los coeficientes de calibración N_{Ka} y N_{D,W} se definen como:

$$N_{K_a} = \frac{\dot{K}_a}{\dot{Q}}$$
$$N_{Dw} = \frac{\dot{D}_w}{\dot{Q}}$$

 Se normalizan los cocientes de cada coeficiente de calibración con respecto al del NRC, y se definen para las comparaciones como:

$$\frac{N_{Ka,NRC}}{N_{Ka,BIPM}} = 1.003(31)$$
$$\frac{N_{Dw,NRC}}{N_{Dw,BIPM}} = 0.9976(51)$$

• El indicador cuantitativo para estimar el grado de equivalencia *D_i* entre el iésimo NMI (Instituto declarado o LSCD) y el BIPM se define como:

$$D = R - R$$

• y para cada par NMIi y NMIj, el grado de equivalencia Dij, se define como:

$$D_{ij} = R_i - R_j$$

• Ri, es el cociente del coeficiente de calibración determinado por el NMI_i respecto del obtenido por el BIPM, cociente formalizado como:

$$R_{i} = \frac{N_{X,NMIi}}{N_{X,BIPM}} = \frac{N_{X,NMIi}}{N_{X,NRC}} \cdot \frac{N_{X,NRC}}{N_{X,BIPM}}$$

INCERTIDUMBRES

• La incertidumbre u_{R,NMI_i} para el R_i se obtiene de combinar las incertidumbres de los coeficientes de calibración con la incertidumbre del cociente $N_{X,NRC}$

 $N_{_X,BIPM}$

$$u_{R,NMI}^{2} = u_{i}^{2} + u_{BIPM}^{2} + u_{r}^{2} - \sum_{k} [f_{k}u_{i}(k)]^{2} - \sum_{k} [f_{k}u_{BIPM}(k)]^{2}$$

- La incertidumbre entre cualquier par de laboratorios u_{ij} para el grado de equivalencia
- D_{ij} se calcula como:

$$u_{ij}^{2} = u_{i}^{2} + u_{j}^{2} - \sum_{k} [f_{k}u_{i}(k)]^{2} - \sum_{k} [f_{k}u_{BIPM}(k)]^{2}$$

Comparación SIM.RI(I)-K1 para la magnitud de Ka

Cámara →	1	01	14	49	1	50	Promedio
NMI ↓	<i>N</i> _k , Gy C⁻¹	N _{kNMI} /N _{kNRC}	<i>N</i> _k , Gy C⁻¹	N _{kNMI} /N _{kNRC}	<i>N</i> _k , Gy C⁻¹	N _{kNMI} /N _{kNRC}	N _{kNMI} /N _{kNRC}
CNEA	45.16	0.9974	45.80	0.9960	45.02	0.9973	0.9969
IAEA	45.02	0.9943	45.73	0.9944	44.98	0.9965	0.9951
ININ	45.31	1.0007	46.00	1.0003	45.07	0.9985	0.9998
IRD	45.24	0.9992	45.87	0.9975	45.14	1.0000	0.9989
IVIC(LSCD)	44.93	0.9923	45.61	0.9918	44.82	0.9928	0.9923
NIST	45.40	1.0027	46.11	1.0028	45.26	1.0027	1.0027
NRC	45.28	1.0000	45.98	1.0000	45.14	1.0000	1.0000

Razón R del coeficiente de calibración del NMI respecto del NCR para el Kerma en aire

Comparación SIM.RI(I)-K4 para la magnitud de Dosis absorbida en agua D_w

Cámara →		101		149		150	Promedio
NMI ↓	<i>N_{Dw}</i> , Gy C ⁻¹	N _{DwNMI} /N _{DwNRC}	<i>N_{Dw}</i> , Gy C ⁻ 1	N _{DwNMI} /N _{DwNRC}	<i>N_{D₩}</i> , Gy C ⁻¹	N _{DwNMI} /N _{DwNRC}	N _{DwNMI} /N _{DwNRC}
CNEA	49.38	0.9994	50.08	0.9972	49.27	0.9996	0.9987
IAEA	49.40	0.9998	50.19	0.9994	49.36	1.0014	1.0002
ININ	49.76	1.0071	50.57	1.0070	49.53	1.0049	1.0063
IRD	50.12	1.0144	50.57	1.0070	49.96	1.0136	1.0116
IVIC(LSCD)	49.28	0.9974	50.11	0.9978	49.38	1.0018	0.9990
NIST	49.34	0.9986	50.16	0.9988	49.23	0.9988	0.9987
NRC	49.41	1.0000	50.22	1.0000	49.29	1.0000	1.0000

Razón R de los coeficientes de calibración de los NMI respecto del NCR para D_w

Valores de las incertidumbres combinadas para los N_k reportados por los NMI. Comparación SIM.RI(I)-K1 para

N_a

	$NMI \rightarrow$	CNEA		IAEA		ININ		IRD		IVIC		NIST		NRC	
Tip	o de Incert.%→	A	В	A	В	A	В	A	В	A	В	A	В	A	В
	Fuente ↓			Rapidez	de K_a medio	lo con el pa	trón								
1	Nk	-	0.36	-	0.2	-	0.69	-	0.18	-	0.4	0.11	0.29	0.07	0.31
2	Estabilidad	-	0.07	-	0.2	0.34	-	-	0.2	-	0.1	-	-	-	-
3	Posicionado	-	-	-	0.01	-	-	0.01	0.1	-	0.02	-	-	-	-
4	Decaimiento	-	-	-	-	-	0.01	-	-	-	-	-	0.01	-	0.02
5	Temperatura y presión	-	0.04	0.03	0.1	-	0.02	-	0.39	0.03	0.1	-	-	-	-
6	Corriente	0.02	0.3	0.05	0.1	0.03	-	0.01	0.11	0.05	0.1	-	-	-	-
		•	•	•	•	Instru	umento de ti	ransferencia	1	•	•	•	•	•	•
7	Posicionado	-	0.03	-	-	-	0.06	0.01	0.03	-	0.02	-	0.02	0.01	-
8	Temperatura y presión	-	0.04	0.03	0.1	-	0.02	-	0.39	0.03	0.1	-	0.07	.04	0.06
9	Corriente	0.02	0.3	0.05	0.1	0.04	0.30	0.04	0.29	0.05	0.1	0.10	0.11	0.06	0.06
Sun	na Cuadrática	0.03	0.56	0.08	0.35	0.34	0.76	0.04	0.70	0.08	0.46	0.15	0.32	0.10	0.32
Incertidumbre combinada, u _c %		0.	57	0.	36	0.	83	0.	70	0.	47	0.	35	0.	34

Valores de las incertidumbres combinadas para los N_{DW} reportados por los NMI. Comparación SIM.RI(I)-K4 para la D_w.

$NMI \rightarrow$		CNEA		IAEA		ININ		IRD		IVIC		NIST		NRC	
Tipe	o de Incert.%→	A	В	A	В	A	В	A	В	A	В	A	В	A	В
	Fuente ↓			Rapidez d	le D_W medi	da con el pa	trón								
1	NDw	-	0.43	-	0.3	-	1.1	-	0.3	-	0.5	0.16	0.32	0.21	0.35
2	Estabilidad	-	0.07	-	0.23	0.31	-	-	0.2	-	0.1	-	-	-	-
3	Posicionado	-	-	-	0.1	-	-	0.01	0.1	-	0.05	-	-	-	-
4	Decaimiento	-	-	-	-	-	0.01	-	-	-	-	-	0.05	-	0.02
5	Temperatura y presión	-	0.04	0.03	0.1	-	0.02	-	0.39	0.03	0.04	-	-	-	-
6	Corriente	0.02	0.3	0.05	0.1	0.05	-	0.01	0.11	0.05	0.1	-	-	-	-
				•	•	Instru	umento de t	ransferencia	3		•		•		
7	Posicionado	-	0.08	-	0.1	-	0.06	0.01	0.09	-	0.05	0.03	-	0.03	-
8	Temperatura y presión	-	0.04	0.03	0.1	-	0.02	-	0.40	0.03	0.04	0.04	0.06	0.04	0.06
9	Corriente	0.02	0.3	0.05	0.1	0.05	0.30	0.03	0.29	0.05	0.1	0.02	-	0.06	0.06
Sun	na Cuadrática	0.03	0.52	0.08	0.45	0.32	0.76	0.03	0.75	0.08	0.54	0.17	0.33	0.22	0.36
Incertidumbre combinada, u _c %		0.	62	0.46		1.18		1.75		0.55		0.37→0.6ª		0.42	

NMI i ↓	$\begin{array}{c c} NMI \ j \rightarrow \\ \hline D_i & u_i \end{array}$		CNEA D _{ij} u _{ij}		IAEA D_{ij} u_{ij}		ININ D _{ij} u _{ij}		IRD D _{ij} u _{ij}		IVIC (LSCD) D _{ij} u _{ij}	
·	/10-3		/10 ⁻³		/10 ⁻³		/10-3		/10-3		/10 ⁻³	
CNEA	0.2	11.1			-1.5	12.9	-7.6	25.3	-12.9	17.5	-0.3	14.2
IAEA	-1.6	6.7	-1.8	12.9			-6.1	23.9	-11.4	15.4	1.2	11.6
ININ	3.1	16.4	2.9	25.3	6.1	23.9			-5.3	26.6	7.3	24.6
IRD	2.2	13.7	2.0	17.5	11.4	15.4	5.3	26.6			12.6	16.6
IVIC(LS CD)	-4.4	9.0	-4.6	14.2	-1.2	11.6	-7.3	24.6	-12.6	16.6		
NIST	6.0	7.4	5.8	17.3	-1.5	15.1	-7.6	26.5	-12.9	19.2	-0.3	16.3
NRC	3.3	7.2	3.1	15.0	-0.2	12.5	-6.3	25.1	-11.6	17.2	1.0	13.8

Grados de equivalencia D_{ij} y sus incertidumbres. Comparación SIM.RI(I)-K4 para D_W

NMI i ↓	NMI j \rightarrow $D_i u_i$		CNEA D _{ij} u _{ij}		IAEA D_{ij} u_{ij}		D _{ij} u _{ij}		D _{ij} u _{ij}		IVIC (LSCD) D _{ij} u _{ij}	
	/10-3		/10 ⁻³		/10 ⁻³		/10-3		/10-3		/10-3	
CNEA	-3.7	11.1			1.8	12.6	-2.9	19.6	-2.0	17.4	4.6	14.0
IAEA	-2.2	7.3	1.5	12.9			-4.7	17.4	-3.8	15.0	2.8	10.8
ININ	3.9	22.9	7.6	25.3	4.7	17.4			0.9	21.2	7.5	18.5
IRD	9.2	13.9	12.9	17.5	3.8	15.0	-0.9	21.2			6.6	16.2
IVIC(LS CD)	-3.4	9.5	0.3	14.2	-2.8	10.8	-7.5	18.5	-6.6	16.2		
NIST	-3.7	13.6	0.0	17.3	7.6	10.0	2.9	18.0	3.8	15.7	10.4	11.7
NRC	-2.4	10.3	1.3	15.0	4.9	9.9	0.2	17.9	1.1	15.6	7.7	11.6

Grado de equivalencia de los patrones de *Ka* respecto del KCRV del BIPM

Grado de equivalencia de los patrones de D_W respecto del KCRV del BIPM

- Para el caso del K_a el NIST y el IVIC (LSCD) son los que tienen menor grado de equivalencia,
- Para la comparación de D_W es el IRD el que tiene menor grado de equivalencia, en ambos casos respecto del KCRV del BIPM.
- <u>El ININ es el Laboratorio con mayor incertidumbre en ambas comparaciones</u>, esta situación es insatisfactoria.

Entre las causas y acciones correctivas para remediar esta situación se <u>tienen</u>:

- •
- Calibrar los patrones nacionales de K_a y D_W en el BIPM, para reducir la u_c de los factores N_k y N_{Dw}.
- En el caso de la componente de largo plazo, <u>tomar solo la variación durante la duración de la</u> <u>comparación</u>.
- Para la medición de la corriente o carga, por un lado: <u>considerar que esta ya lleva implícita la</u> <u>incertidumbre del factor de corrección por condiciones atmosféricas.</u>
- Por otro lado, mejorar los procesos de <u>toma de temperatura dentro de la cavidad del aire de la</u> <u>cámara, mediante una cavidad de aire similar a la de dicha cámara</u>.
- Realizar una verificación independiente del cálculo de las incertidumbres

• MUCHAS GRACIAS