J. M. Lopez-Romero¹, N. Diaz- Muñoz¹ and M.A. Lombardi²

¹ *Time and Frequency Divison,* Centro Nacional de Metrología, CENAM ² Time and Frequency Divison, National Institute of Standards and Technology, NIST

Salvador Dalí

J. M. Lopez-Romero¹, N. Diaz- Muñoz¹ and M.A. Lombardi²

¹ *Time and Frequency Divison,* Centro Nacional de Metrología, CENAM ² Time and Frequency Divison, National Institute of Standards and Technology, NIST

Outline

- 1. Motivation
- 2. Time scales
- 3. The SIM time and frequency comparison network
- 4. Preliminary results
- 5. Conclusions

Outline

1. Motivation

- 2. Time scales
- 3. The SIM time and frequency comparison network
- 4. Preliminary results
- 5. Conclusions

Time scales Demanding applications

Time keeping

Satellite navigation systems

Telecomunications systems

Fundamental Physics

The BIPM UTC time scale

International links

BIPM UTC time scale facts

- 56 participating laboratories
- Around 260 atomic cloks envolved
- 10 primary frequency standards (5 Cs)
- Stablility: 0.6 x 10⁻¹⁵ (de 20 a 40 días)
- Uncertainty $< 3 \times 10^{-15}$

The SIM region

Outline

1. Motivation

2. Time scales

- 3. The SIM time and frequency comparison network
- 4. Preliminary results
- 5. Conclusions

¿How to define a time scale in terms of a set (ensamble) of clocks?

Averaged time scale concept

Averaged time scale concept

Mathematical model for a clock

Frequency output of a clock:
$$V(t) = [V_0 + \varepsilon(t)] \sin[2\pi \upsilon_0 t + \phi(t)]$$

Noise

Where

$$\upsilon(t) = \upsilon_0 + \frac{1}{2\pi} \frac{d}{dt} \phi(t)$$

$$\left|\frac{1}{2\pi\nu_0}\frac{d}{dt}\phi(t)\right| << 1$$

Mathematical model for a clock

$$V(t) = [V_0 + \varepsilon(t)]\sin[2\pi\upsilon_0 t + \phi(t)]$$

Fractional frequency deviation

$$y(t) = \frac{v(t) - v_0}{v_0} = \frac{1}{2\pi} \frac{d}{dt} \phi(t)$$

Time deviation

$$x(t) = \frac{\phi(t)}{2\pi\nu_0}$$

$$y(t) = \frac{d}{dt}x(t)$$

$$\overline{y_i} = \frac{1}{\tau} \int_{t_i}^{t_i + \tau} y(t) dt = \frac{1}{\tau} \left[x(t_i + \tau) - x(t_i) \right]$$

Mathematical model for a clock

Frequency prediction

$$y(t) = y(t_0) + d_0(t - t_0) + \varepsilon(t)$$

Time prediction

$$x(t) = x(t_0) + y(t_0) \times (t - t_0) + \frac{1}{2}d_0(t - t_0)^2 + \psi(t)$$

1 clock case

If h(t) is the reading of a clock at the time t then the most simple time scale *TA* can be defined by the relation

TA(t) = h(t) \int TA(t) - h(t) = 0

2 clocks case

$$TA(t) = \frac{1}{2} (h_1(t) + h_2(t))$$

$$\int TA(t) - \left[\frac{1}{2} (h_1(t) + h_2(t)) \right] = 0$$

$$\int \sum_{i=1}^{2} \left[TA(t) - h_i(t) \right] = 0$$

N clocks case

N clocks with different weights

$$TA(t) = \frac{1}{N} \sum_{i=1}^{N} \omega_i h_i(t) \quad \square \qquad TA(t) - \frac{1}{N} \sum_{i=1}^{N} \omega_i h_i(t) = 0$$
$$\sum_{i=1}^{N} \omega_i [TA(t) - h_i(t)] = 0$$

With the restriction

$$\sum_{i=1}^{N} \omega_i = 1$$

N clocks with different weights

$$TA(t) = \frac{1}{N} \sum_{i=1}^{N} \omega_i h_i(t) \qquad \qquad TA(t) - \frac{1}{N} \sum_{i=1}^{N} \omega_i h_i(t) = 0$$

$$\sum_{i=1}^{N} \omega_i [TA(t) + h_i(t)] = 0$$
With the restriction
$$\sum_{i=1}^{N} \omega_i = 1$$
Not a physical observable!!

$$TA(t) = \frac{\sum_{i=1}^{N} \omega_i h_i(t)}{\sum_{i=1}^{N} \omega_i} = \frac{\sum_{i=1}^{N} \frac{1}{\sigma_i(\tau)} h_i(t)}{\sum_{i=1}^{N} \frac{1}{\sigma_i(\tau)}}$$

$$TA(t) = \frac{\sum_{i=1}^{N} \omega_{i} h_{i}(t)}{\sum_{i=1}^{N} \omega_{i}} = \frac{\sum_{i=1}^{N} \frac{1}{\sigma_{i}(\tau)} h_{i}(t)}{\sum_{i=1}^{N} \frac{1}{\sigma_{i}(\tau)}}$$
 !!??

Only time difference between clocks is an physical observable

Clock k and *TA* time scale difference is given by the relation:

$$x_k(t) = TA(t) - h_k(t)$$

$$x_k(t) = \sum_{i=1}^N \omega_i x_{ki}(t)$$
$$\bar{X}_k(t+\tau) = X_k(t) + \left[Y_k(t) + \frac{D_k \tau}{2}\right] t$$

$$X_{k}(t+\tau) = \sum_{j=1}^{N} w_{j} \Big[\hat{X}_{j}(t+\tau) - X_{jk}(t+\tau) \Big]$$

$$\widehat{Y}_{k}(t+\tau) = \frac{X_{k}(t+\tau) - X_{k}(t)}{\tau}$$

$$Y_{k}(t+\tau) = \frac{Y_{k}(t+\tau) + m_{k}Y_{k}(t)}{1+m_{k}}$$

Experimental set up

 $x_{ij}(t) = h_j(t) - h_i(t) = [h_0(t) - h_i(t)] - [h_0(t) - h_j(t)]$

Experimental set up

Experimental set up

Experimental set up to transform a virtual TA time scale into a real TA time scale

Esquema completo de generación del UTC(CNM)

Outline

1. Motivation

2. Time scales

3. The SIM time and frequency comparison network

4. Preliminary results

5. Conclusions

Common view method of the GPS

NIST CENAM ICE CENAMEP

ONRJ

INTI

- Around 30 Cs clocks at SIM (without the USNO)

- 10 Hydrogen Masers at SIM (without the USNO)

-12 SIM laboratories participating on the SIM TF Network (Paraguay, Uruguay the latest)

- INDECOPI (Peru) will be hopefylly added soon to the SIM TF Network

- Probably two or three more labs during 2009

Current and Future SIM Network Members.						
Country	NMI	Member	National			
		of SIM	Standard			
		Network				
Argentina	INTI	Yes	Cesium			
Brazil	ONRJ	Yes	Time Scale			
Canada	NRC	Yes	Time Scale			
Chile	INN	Future	Rubidium			
Colombia	SIC	Yes	Cesium			
Costa Rica	ICE	Yes	Cesium			
Guatemala	LNM	Yes	Rubidium			
Jamaica	BSJ	Yes	Cesium			
Mexico	CENAM	Yes	Time Scale			
Panama	CENAMEP	Yes	Cesium			
Paraguay	INTN	Future	Rubidium			
Peru	INDECOPI	Future	Rubidium			
St. Lucia	SLBS	Future	Rubidium			
Trinidad /	TTBS	Future	Rubidium			
Tobago						
United	NIST	Yes	Time Scale			
States						
Uruguay	UTE	Future	Rubidium			

Obtaining traceability to the second of the SI though the SIM TF network

SIM GPS system

- Multichannel (8) GPS receiver
- SIM receiver sends data automatically to the SIM server every 10 minutes
- includes SIM's own software (developed by NIST)
- Includes a PC. It is able to show common view results in near real time among participating laboratories

TIME AND FREQUENCY METROLOGY WORKING GROUP Working to support time and frequency metrology throughout the Americas

SIM GPS antenna

Novatel antenna Rejects multiple reflections of the GPS signal

SIM Time and Frequency Metrology Working Group

"Working to support time and frequency metrology throughout the Americas'

Welcome

Select a Menu Item
Home
CMCs
Comparisons
Hardware
Meetings
Publications
Real-Time Grid
SIM Web Site
OAS Web Site
BIPM Web Site
2002 - 2007 - 207
Time and Frequency Groups
CENAM
NIST
NRC
ONRJ
lational Web Clocks (SIM region
Brazil
Canada
Colombia
Mexico
Panama
United States
National Web Clocks (outside SIM)
China
Germany
Japan
Singapore

This site contains files and information related to the Time and Frequency Working Group of the Sistema Interamericano de Metrologia. It is designed so that participating laboratories can share information and view the results of interlaboratory comparisons.

http://tf.nist.gov/sim/

SIM Time and Frequency comparison network

SIM Time Scale Comparisons via GPS Common-View

(Table shows results for the 10-minute period ending on 07-24-2007 at 2340 UTC)

	NTERAMERICANO	NIST		N7C · CN7C			ICE	R
		UTC(NIST)	UTC(CNM)	UTC(NRC)	UTC(CNMP)	UTC(ONRJ)	UTC(ICE)	UTC(SIC)
	UTC(NIST)		- 18.88	38.48	-122.13	-36.67	-377534824.10	-216367.87
۲	UTC(CNM)	18.88		57.71	-106.31	-22.83	-377534808.93	-216351.58
*	UTC(NRC)	-38.48	-57.71		-161.76	-76.88	-377534863.94	-216407.26
*	UTC(CNMP)	122.13	106.31	161.76		06.60	-377534703.62	-216245.04
	UTC(ONRJ)	36.67	22.83	76.88	-86.60		-377534785.42	-216334.37
0	UTC(ICE)	377534824.10	377534808.93	377534863.94	377534703.62	377534785.42		377318454.63
	UTC(SIC)	216367.87	216351.58	216407.26	216245.84	216334.37	-377318454.63	
Last Update (I	HHMM UTC)	2340	2340	2340	2340	2340	2340	2340
This table was created at 07-24-2007 (MID 54305) 23:45:47 UTC and will automatically refresh every five minutes								

Comparison between NIST and CENAM

UTC(CNM) versus UTC(NIST) via Common-View GPS

<u>1 Day Averag</u>	es	<u>1 Hour Averages</u>	<u>10</u>	<u>Minute Averages</u>	<u>Ν</u> ε	ext Date Last Da	<u>te Flip</u>
Laboratory 1	Centro Nacional de Metrologia		ID Number	007	End Date	2007-07-24	
Latitude		20° 32 min 13.373 s N Counter Delay			-0.15 ns	Reference Source	UTC(CNM)
Longitude	100° 15 min 17.204 s W REF Dela			REF Delay	12.9 ns	Mask Angle	10°
Altitude	1917.16 m			Receiver Delay	55.2 ns	Receiver Temp.	25° C
Laboratory 2	National Institute of Standards and Technology			ID Number	006	Baseline	2198.851 km
Latitude	39° 59 min 44.494 s N			Counter Delay	-0.10 ns	Reference Source	UTC(NIST)
Longitude	105° 15 min 43.409 s W			REF Delay	435.4 ns	Mask Angle	10°
Altitude	1645.60 m		Receiver Delay	1.5 ns	Receiver Temp.	29° C	
Hours in Common-V	n ⁄iew	Mean Time Offset (ns)	Range (n	as) Fre	equency Offs	et Con	fidence (r)
236		-20.87	12.35		+2.38 x 10 ⁻¹⁵		+0.26

TIME AND FREQUENCY METROLOGY WORKING GROUP Working to support time and frequency metrology throughout the Americas

Comparison between NIST and CENAM

UTC(NIST) - UTC(NRC).

Summary of uncertainties (in nanoseconds) for all six comparisons (March-April 2006)

	CNM – CNMP	NIST – CNM	CNM – NRC	NIST – CNMP	NRC – CNMP	NIST – NRC
Baseline (km)	2544.0	2198.9	3520.7	4194.9	3989.0	2471.3
Mean Freq. Offset	-6.7 × 10 ⁻¹⁴	-2.8 × 10 ⁻¹⁵	-4.8 × 10 ⁻¹⁵	-7.0 × 10 ⁻¹⁴	-6.3 × 10 ⁻¹⁴	-7.7 × 10 ⁻¹⁵
Mean Time Offset	-4690.4	+10.3	+11.0	-4680.7	-4702.8	+21.2
$U_A^{}, \sigma_x^{}(\tau)$	1.8	1.2	1.4	1.5	1.5	1
U _B , Calibration	4	4	4	4	4	4
U _B , Coordinates	3	3	3	3	3	3
U _B , Environment	3	3	3	3	3	3
U _B , Multipath	2	2	2	2	2	2
U _B , Ionosphere	2	1.5	2.5	3	3	1.5
U _B , Ref. delay	0.5	0.5	0.5	0.5	0.5	0.5
U _B , Resolution	0.05	0.05	0.05	0.05	0.05	0.05
$U_{c}, k = 2$	13.5	13.1	13.5	14.0	14.0	12.9

J. M. Lopez-Romero¹, N. Diaz- Muñoz¹ and M.A. Lombardi²

¹ *Time and Frequency Divison,* Centro Nacional de Metrología, CENAM ² Time and Frequency Divison, National Institute of Standards and Technology, NIST

Outline

- 1. Motivation
- 2. Time scales
- 3. The SIM time and frequency comparison network

4. Preliminary results

5. Conclusions

SIM Time and Frequency comparison network and SIM-time scale generation

Time scale Algorithm

$$\begin{split} \hat{X}_i(t+\tau) &= X_i(t) + \left[Y_i(t) + \frac{D_i \tau}{2} \right] \tau \\ X_i(t+\tau) &= \sum_{j=1}^N w_j \Big[\hat{X}_j(t+\tau) - X_{ji}(t+\tau) \Big] \\ \hat{Y}_i(t+\tau) &= \frac{X_i(t+\tau) - X_i(t)}{\tau} \\ Y_i(t+\tau) &= \frac{\hat{Y}_i(t+\tau) + m_i Y_i(t)}{1+m_i} \end{split}$$

SIM-time scale generation: Preliminary results

SIM-time scale generation: Preliminary results

SIM-time scale generation: Preliminary results

SIM-time scale: first time scale in the world generated with the contribution of several nations in real time

Outline

- 1. Motivation
- 2. Time scales
- 3. The SIM time and frequency comparison network
- 4. Preliminary results
- **5.** Conclusions

Conclusions

1. The SIM Time and frequency comparison network has currently 11 SIM laboratories under continuous comparison in real time

2. CENAM has developed a time scale algorithm and generating a averaged time scale since march 2008. Results are in agreement with the expected performance

3. The SIM time scale algorithm will be tested by first time in January 2009 using real time data from the SIM time and frequency network

4. The SIM time scale will be the first time scale in the world generated in real time with the contribution of several nations

5. SIM probably will run 3 copies of the SIM time scale: NRC, NIST and CENAM

J. M. Lopez-Romero¹, N. Diaz- Muñoz¹ and M.A. Lombardi²

¹ Time and Frequency Divison, Centro Nacional de Metrología, CENAM
² Time and Frequency Divison, National Institute of Standards and Technology, NIST

Salvador Dalí