Importancia de la Calidad y Trazabilidad de las Mediciones del Gas Natural en los Procesos productivos de México

Mariano Ojeda, Guillermo Romero, Gustavo Torres

Praxair Mexico, S. de R. L. de C. V. km 32,5 Autopista México-Querétaro, Col. Lechería, 54900, Estado de México, México. Mariano Ojeda@praxair.com

RESUMEN

El interés por el gas natural como combustible alternativo proviene de considerarlo; amigable al ambiente, combustión, disponibilidad y su versatilidad de uso, de ahí su aplicación en sectores residencial, comercial, industrial y automotriz. Dado que los procesos de obtención así como de los yacimientos utilizados, la calidad del gas natural varía. Lo anterior es evidente a través de las mediciones realizadas por Praxair Mexico durante 2007, en donde es posible observar la falta de homogeneidad en su composición y esto impacta directamente en los procesos productivos, con este marco toma relevancia la calidad de las mediciones.

1. INTRODUCCIÓN

Como consecuencia de los procesos de obtención así como de los yacimientos utilizados en la obtención del Gas Natural que se distribuye en la República Mexicana; la calidad del gas natural varía de acuerdo a la zona geográfica donde se realiza la distribución y consumo del mismo. Lo anterior se evidencia a través de muestreos realizados en distintos puntos de distribución durante el 2007 por Praxair México, en donde es posible observar la falta de homogeneidad de los distintos parámetros evaluados en el gas natural y que impactan directamente en los procesos productivos donde se utiliza. Los principales parámetros de control de calidad son los contenidos de hidrocarburos ligeros, pesados, humedad, gases Inertes, compuestos azufrados y determinación del poder calorífico. Cambios significativos en estos parámetros generan problemas en los procesos tanto del distribuidor como del consumidor final; ejemplos de problemáticas: congelamiento de válvulas de control, corrosión en líneas, baja eficiencia y desgaste en los equipos utilizados en la generación de Energía eléctrica, contaminación ambiental por la generación de subproductos azufre durante combustión entre otros.

Bajo este escenario es de suma importancia el mantener y asegurar la validez de las mediciones realizadas en la determinación de concentraciones de los componentes típicos del gas natural. Para lo cual es indispensable el uso de Materiales de Referencia con trazabilidad comprobable, estos requeridos para la calibración de los instrumentos de medición, verificaciones de procesos, validaciones de los métodos analíticos.

En ésta última parte, el trabajo conjunto con el CENAM efectuado por Praxair Mexico en su programa de MRTC's para mediciones de composición de gas natural representa un rol muy importante para acrecentar la calidad de las mediciones y dar claridad a las transacciones comerciales.

2. Producción Materiales de Referencia de Gas Natural – MRTC's

2.1. Preparación

Método İlenado Gravimétrico procedimiento interno numero ZZ/I-02-021/0-P0215 Método Praxair Mexico (Derechos Reservados) para composición los siguientes lotes candidatos a MRTC's:

- a. Nitrógeno 4,0 cmol/ mol, Bióxido de carbono 1,0 cmol/ mol, etano 3,0 cmol/mol, Propano 1,00 cmol/mol, isobutano 0,2 cmol/mol, n-butano 0,20 cmol /mol en Balance Metano, código de identificación L-602261
- b. Nitrógeno 13,9 cmol/ mol, Bióxido de carbono 0,50 cmol/ mol, etano 3,0 cmol/mol, Propano 0,50 cmol/mol, isobutano 0,1 cmol/mol, n-butano 0,10 cmol /mol en Balance Metano, código de identificación L-602260

En ambos casos el tamaño de lote es de 12 piezas.

2.2. Condiciones de Llenado

Las condiciones de llenado son:

a. L-602260 Presión: 900 psig / 6.20 MPab. L-602261 Presión: 820 psig / 5.65 MPa

3. RESULTADOS

3.1. Proceso Productivo

Se realizó la producción de dos lotes candidatos a MRTC's (12 piezas cada uno). Los procesos de producción se ilustran en las Figs. 1 y 2.

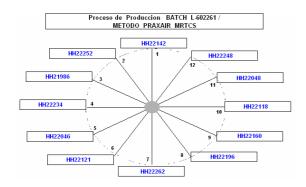


Fig. 1. Proceso de producción, lote L-602261.

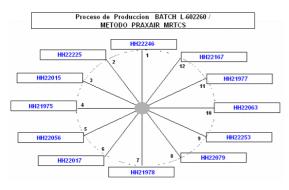


Fig. 2. Proceso de producción, lote L-602260.

3.2. Calibración

3.2.1. Procedimiento de Calibración

El procedimiento de calibración se muestra en la Fig. 3.

Procedimiento de calibración del instrumento y ensayo de los Patrones Control de los lotes de M

La calibración se realiza en el momento del ensayo mediante un estándar exteno al Material de Referencia Fecha de calibración: 2006, Junio, 06

Secuencia analítica: ML 6678 PRM HH22046 Clindro Control MRTC Clindro Control MRTC
H-12253 Cilindro Control MRTC
Las respuestas y concentraciones calculadas se muestran adelante

Fig. 3. Procedimiento de Calibración.

3.2.2. Material de Referencia

El material de referencia certificado utilizado fue provisto por CENAM, y tiene las características mostradas en la Tabla 1.

Tabla 1. Material de referencia utilizado.

Tipo	No. Serie	Composición (cmol/mol)	U (k=2) (cmol/mol)	Caducidad
		Metano 89,60	0,18	
		Etano 4,958	0,016	
		Propano 1,006	0,004	
PRM	ML6678	i-Butano 0,3016	0,0015	2006, Junio 12
		n-Butano 0,3010	0,0015	
		Bióxido de Carbono 1,006	0,004	
		Nitrógeno 2,503	0,010	

3.3. Calificación Muestra Control

La muestra de control estuvo conformada por los lotes 602261 y 602260, cuyas características se muestran en las Tablas 2 y 3.

Tabla 2. Características del lote 602261.

Tipo	Número						
Muestra	Serie		L-1	L-2	L-3	L-4	L-5
Patrón	ND 00121	2,48 cmol/mol N2	331.80841	331.06207	331.63919	331.18265	*332.71237
Control	HH220456	4,014 cmol/mol N2	*532.33984	537.96521	534.32184	*531.21417	532.96216
Patrón	ND 00121	1,00 cmol/mol CO2	136.28729	135.24979	134.64262	134.19177	135.50363
Control	HH220456	1,0139 cmol/moCO2	137.96474	137.24052	137.56734	*135.10252	*136.06602
Patrón	ND 00121	5,00 cmol/mol C2H6	709.07239	705.80261	702.98486	702.25446	705.95667
Control	HH220456	2,9515 cmol/mol C2H6	416.1257	417.76013	418.5661	412.29355	413.17365
Patrón	ND 00121	1,00 cmol/mol C3H8	7216.32031	7103.98975	7122.3208	*7097.89258	7115.97852
Control	HH220456	1,0348 cmol/mol C3H8	7402.00879	*7474.26904	7402.71826	*7444.49219	7421.55322
Patrón	ND 00121	0,300 cmol/mol i-C4H10	2849.48389	2802.63843	2808.56323	2796.60156	2804.31787
Control	HH220456	0,2013 cmol/mol i-C4H10	1882.92151	*1902.6427	1883.974	*1897.37256	1887.75793
Patrón	ND 00121	0,300 cmol/mol n-C4H10	2812.13184	2766.83276	2771.67969	2758.81738	2767.03394
Control	HH220456	0,2001 cmol/mol n-C4H10	1864.88904	*1883.20605	1863.13086	*1882.50696	1872.00574

Tipo Muestra	Media Area	SDEV.	% C.V.	Conc. De componente	% Desviación
Patrón	331.42308	0.35745	0.10785	2.48000	
Control	535.08307	2.58693	0.48346	4.004	-0.25
Patrón	134.69473	0.53093	0.39417	1.00000	
Control	137.59087	0.36268	0.26360	1.022	0.75
Patrón	705.21420	2.71630	0.38517	5.00000	
Control	415.58383	2.76400	0.66509	2.947	-0.17
Patrón	7139.65235	51.67407	0.72376	1.00000	
Control	7408.76009	11.08485	0.14962	1.038	0.28
Patrón	2812.32100	21.21382	0.75432	0.30000	
Control	1884.88448	2.54352	0.13494	0.2011	-0.12
Patrón	2775.29912	21.10326	0.76040	0.30000	
Control	1866.67521	4.69933	0.25175	0.2018	0.83

3.4. Homogeneidad

La homogeneidad fue evaluada para etano como componente en el lote 602261, y para nitrógeno como componente en el lote 602260.

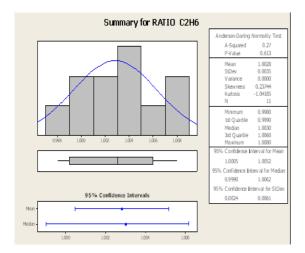
La Fig. 4 muestra los resultados para el lote 602261, considerando al etano como componente, mientras que la Tabla 4 muestra los resultados correspondientes.

La Tabla 5 muestra los resultados para el lote 602260, tomando como componente al nitrógeno.

Tabla 3. Características del lote 602260.

Tipo	Número			LECTU	RAS CORRE	GIDAS	
Muestra	Serie		L-1	L-2	L-3	L-4	L-5
Mult-06-448-0705	ML6678	2,503 cmol/mol N2	442.52554	445.33511	442.90823	443.57617	446.25491
Control	HH22253	13,4947 cmol/mol N2	2387.94531	2385.80298	2383.70508	2386.49097	2375.31885
Mult-06-448-0705	ML6678	1,006 cmol/mol CO2	180.4073	180.43945	178.78796	179.75014	179.80702
Control	HH22253	0,5057 cmol/moCO2	90.31614	90.59973	90.47663	*92.43933	90.73642
Mult-06-448-0705	ML6678	4,958 cmol/mol C2H6	925.81689	932.50641	926.54712	930.91699	*933.72443
Control	HH22253	2,9878 cmol/mol C2H6	560.29639	559.78113	558.58868	561.83618	*558.21521
Mult-06-448-0705	ML6678	1,006 cmol/mol C3H8	3861.78589	3868.8606	3842.22144	3861.1123	3884.55566
Control	HH22253	0,4979 cmol/mol C3H8	1901.06848	*1897.26086	*1894.96008	1913.16992	1902.58032
vlult-06-448-0705	ML6678	0,3016 cmol/mol i-C4H10	1536.12646	1539.56824	1527.50427	1536.71497	1544.32654
Control	HH22253	0,0999 cmol/mol i-C4H10	508.45392	508.69757	*507.12997	512.49127	509.34177
Mult-06-448-0705	ML6678	0,3010 cmol/mol n+C4H10	1527.80151	1530.16272	1516.62378	1531.026	1536.25586
Control	HH22253	0,1001 cmol/mol n-C4H10	508.10928	509.21066	507.59769	513.64642	510.68234
Patrón	ML6678	89,60 cmol/mol CH4	12180.0	12266.3	12199.7	12204.6	12295.3
Control	HH22253	82,3139 cmol/mol CH4	11245.0	11236.5	11213.4	11235.6	11190.4

Tipo Muestra	Número Serie	Media Volts	SDEV.	% C.V.	Conc. De componente	%
Mult-06-448-0705	ML6678	444.11999	1.60785	0.36203	2.5030	Desviacion
Control	HH22253	2383.8526	5.00904	0.21012	13.44	-0.44
Mult-06-448-0705	ML6678	179.83837	0.67028	0.37271	1.0060	
Control	HH22253	90.53223	0.17892	0.19763	0.5064	0.15
Mult-06-448-0705	ML6678	928.94685	3.27146	0.35217	4.9580	
Control	HH22253	560,12560	1,34611	0.24032	2,990	0.06
Mult-06-448-0705	ML6678	3863.70718	15.27480	0.39534	1.0060	
Control	HH22253	1905.60624	6.59381	0.34602	0.4962	-0.35
Mult-06-448-0705	ML6678	1536.84810	6.14760	0.40001	0.3016	
Control	HH22253	509.74613	1.86803	0.36646	0.1000	0.09
Mult-06-448-0705	ML6678	1528.37397	7.25865	0.47493	0.3010	
Control	HH22253	509.84928	2.42988	0.47659	0.1004	0.29
Patrón	ML6678	12229.18000	49.09600	0.40147	89.6000	
Control	HH22253	11224.1800	22.20905	0.19787	82.24	-0.09



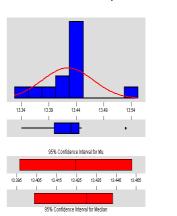

Fig. 4. Lote 602261, Componente Etano.

Tabla. 4. Lote 602261, Componente Etano.

		Ratio	Etano
TIPO	Numero de	Muestra /	Conc.
CILINDRO	Serie	HH22046	(cmol/mol)
Control	HH22046	1.0051	2.9616
Muestra	HH22121	0.9999	2.9461
Muestra	HH22048	0.9964	2.9360
Muestra	HH22234	1.0064	2.9654
Muestra	HH22196	1.0020	2.9524
Control	HH22046	1.0014	2.9508
Control	HH22046	1.0002	2.9471
Muestra	HH22252	0.9996	2.9452
Muestra	HH22248	1.0022	2.9530
Muestra	HH22160	1.0066	2.9660
Muestra	HH22142	0.9985	2.9420
Control	HH22046	1.0019	2.9520
Control	HH22046	0.9972	2.9384
Muestra	HH21986	1.0086	2.9719
Muestra	HH22118	1.0014	2.9508
Muestra	HH22262	1.0009	2.9493
Control	HH22046	0.9977	2.9398
	MEDIA	1.0015	2.9510
	SDEV.	0.0035	0.0102
	C.V,	0.3449	0.3449

Tabla 5. Lote 602260, Componente Nitrógeno.

		Ratio	N2
TIPO	Numero de	Muestra/	Conc.
CILINDRO	Serie	HH22056	(cmol/mol)
Control	HH22253	1.000	13.44
Muestra	HH22063	0.993	13.34
Muestra	HH22246	0.997	13.39
Muestra	HH22079	0.998	13.41
Muestra	HH22015	0.995	13.36
Control	HH22253	1.000	13.44
Muestra	HH22256	0.998	13.41
Muestra	HH21977	1.000	13.43
Muestra	HH21975	1.001	13.45
Muestra	HH21978	0.999	13.43
Control	HH22253	1.000	13.44
Vluestra	HH22017	1.007	13.53
Muestra	HH22167	1.001	13.45
	MEDIA	0.9991	13.42
	SDEV.	0.0033	0.0439
	c.v,	0.3269	0.3269

Variable: I	N2
Anderson-Derling Nor	mality Test
A-Squared:	0.541
P-Value:	0.132
Mean	13.4246
StDev	0.0467
Variance	2.18E-03
Skewness	0.282179
Kurtosis	1.73344
N	13
Minimum	13.3400
1st Quartile	13,4000
Median	13.4300
3rd Quartile	13.4450
Maximum	13.5300
95% Confidence Inter	val for Mu
13.3964	13.4528
95% Confidence Interv	al for Sigma
0.0335	0.0770
95% Confidence Interv	al for Median
13.4037	13.4432

Fig. 5. ¡Urge pie de figura!

Descriptive Statistics

3.5. Equipo Analítico

Cada una de las mezclas madre fue verificada con un cromatógrafo de gases Agilent 6890 plus G1540A, serie US00008744 con detectores FID y TCD, utilizando patrones trazables a través de materiales de referencia primarios, Fig. 6.

Fig. 6. Cromatógrafo utilizado.

3.6. Resultados MRTC'S CENAM vs Resultados PRAXAIR México

Las Tablas 6 y 7 muestran los resultados obtenidos por CENAM y por Praxair México para los lotes evaluados.

Tabla 5. Resultados obtenidos para el lote 602261.

LOTE: 602261			
2012 : 002201	PRAXAIR	CENAM	DIF
	cmol mol ⁻¹	cmol mol ⁻¹	% RELATIVO
Nitrogeno	4.008	4.018	-0.25
Bióxido de Carbono	1.022	1.021	0.10
Etano	2.947	2.947	0.00
propano	1.032	1.030	0.19
Isobutano	0.2007	0.2002	0.25
n-Butano	0.2011	0.2007	0.20
Metano	90.59	90.58	0.01

Tabla 6. Resultados obtenidos para el lote 602260.

LOTE 602260			
COMPONENTE	PRAXAIR	CENAM	DIF
	cmol mol⁻¹	cmol mol ⁻¹	% RELATIVO
Nitrogen	13.460	13.46	0.00
Carbon Dioxide	0.5057	0.5065	-0.16
Ethane	2.99	2.99	0.00
Propane	0.4962	0.4964	-0.04
Iso-Butane	0.1000	0.1000	0.00
n-Butane	0.1004	0.1002	0.20
Methane	82.31	82.28	0.04

3.6. Presentación de los MRTC's

La Fig. 7 muestra la presentación final de los materiales de referencia trazables certificados.

Fig. 7. Materiales de referencia trazables certificados.

4. DISCUSIÓN

Como se puede observar este trabajo permitió desarrollar materiales de referencia trazables a nuestro centro nacional de metrologia CENAM (BIPM), para aplicaciones de gas natural, lo cual permitirá contar con disponibilidad de patrones de referencia trazables realmente a la sustancia mol/mol.

Esto permitirá a la industria hacer excelentes mediciones, confiables y con transparencia comercial verdadera, con trazabilidad válida a nivel internacional. La Fig. 8 muestra la cadena de trazabilidad para este caso, mientras que la Fig. 9 presenta un certificado de CENAM para estos materiales. Todo esto factible gracias a que hoy día CENAM tiene ya oficializada su capacidad de medición y diseminación de trazabilidad con incertidumbre presupuestada dentro del grupo de los institutos nacionales de metrología. La Fig. 10 muestra las capacidades de medición y calibración, CMC's, declaradas por CENAM ante la

Oficina Internacional de Pesas y Medidas, BIPM, para el gas natural sintético [1].

Fig. 8. Ejemplo de la cadena de trazabilidad para los MRTC's producidos.

Fig. 9. Certificados emitidos por el CENAM para los MRTC'S de Praxair México.

n the case where is to the largest number The expanded uno	rical value of the	uncertainty !	bund within the	quantity rang	4.		smalest nu	merical is	Aue of the	uncertains	Y	THE
	Total Target St		Mean	urand	Disservingtion Range of		Range of Expanded Uncertainties as Disseminated			Mechanism(s) for		
MMI Service Mentifier		Matrix	Analyte or Component	Quantity	From	То	Unit	From	То	Unit	is the expanded uncertainty a relative one?	Measurement Service Delivery
830-QS01,9-008	Environmental	ntragen	carben dicide	Amount of substance	300	400	prostract	1.6	1.5	90	Yes	Program for value- essignment to gas minture from producers (MPTC)
633-0501.0-013	Environmental	nitrogen	nitric oxide	Amount-of- substance	600	860	nmolimal	1.4	2	*	Yes	MRTC-Program and Analytical Services
830-QS01-0-014	Environmental	ningen	rátric sociale	Amount-of- substance	1	1.5	prolined	14	2	4	Ves	MRTC-Program and Analytical Services
530-QSC1.9-007	Feel	synthetic natural gas	retutane	Amount-of- substance	0.00	6.22	ornalimal	0.8	1.3	*	Yes	MRTC-Program and Analytical Services
630-QSC1,Q-008	Fael	eynihetic natural gas	i-butane	Amount of substance	0.00	0.22	onolimal	0.0	1.4	*	744	MRTC Program and Analytical Services
833-0301.9-009	Fat	synthetic notural gas	propone	Amount of substance	0.45	1.1	anatmax	0.92	121		Yes	MRTC-Program and Analytical Services
530-9501,0-010	Fail	synthetic natural para	store	Amount-of-	2.7	33	omolimal	0.6	1.14	*	Yes	MRTC-Program and Analytical Services

Fig. 10. CMC'S de CENAM para Gas Natural Sintético.

5. CONCLUSIONES

Con estos importantes MRTC's se garantiza la calidad de las mediciones de gas natural en México, donde hoy día nuestro gobierno tiene grandes expectivas para su crecimiento como combustible primario en uso en nuestra industria, como lo ilustra la Fig. 11.

Fig. 11. Expectativas de consumo de gas natural en México. Fuente: Revista Manufactura, junio, 2008.

AGRADECIMIENTOS

Se agradece el apoyo de CENAM por ejecución de este proyecto, así como a los directivos de Praxair México; con este esfuerzo conjunto nuestro país cuenta con materiales de referencia certificados que garantizaran la calidad de las mediciones de este importante combustible en Mexico y America Latina.

REFERENCIAS

[1] Sitio Web BIMP, Apartado de CMC´s, http://kcdb.bipm.org/appendixC/QM/MX/QM_MX-4.pdf