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Abstract 

  This  work aims at  presenting an analysis of  the 
uncertainties  and  their  propagation  in  the  indirect 
determination  of  the  densities  of  fluids  at  high 
pressures,  by  means  of  a  vibrating  tube 
densitometer  (VTD),  along with  a specific  physical 
model for the instrument known as the FPMC model. 
Insight is still needed with respect to the accuracy of 
the  density  measurements  obtained  by  means  of 
this  commonly  used  technique  in  research 
laboratories. This study is based on data obtained 
from  electronic  data  acquisition,  which  allows  to 
analyze  significant  samples  of  the  measured 
variables,  that  can  be  treated  by  means  of 
descriptive statistics. 
  The uncertainty analysis is illustrated on the basis 
of  recent  experimental  measurements  of  the 
densities of water (used as the reference calibration 
fluid at pressure up to 700 bar), and of acetonitrile. 
The  stability  and  correlation  of  the  measured 
variables  and  their  distributions  are  analyzed  at 
different  pressures in the range of (10 – 700) bar 
around 323 K. From this, budgets of uncertainty for 
the  calibration  of  the  VTD  and  for  common 
measurements  of  the  densities  of  compressed 
liquids,  with  the  current  methodology,  are 
established  and  compared  with  the  results  from 
recently published works [4-6], using the same type 
of instrument and different measurement methods.
  The uncertainties in the variables and parameters 
of  the  problem  are  then  propagated  through  the 
FPMC  “model”.  The  standard  GUM  propagation 
techniques  are  used  taking  into  account  the 
correlations between the measured variables (T, p, 
τ)  and  the  parameters  of  the  model.   Due  to  the 
complexity in the inter-dependence of the measured 
variables with  the measurand,  the adaptive  Monte 
Carlo  Method  is  more  suitable  than  the  standard 
analytical  propagation  formula,  for  this  type  of 
analysis.  It  is  shown  how  the  uncertainty  in  the 
densities  obtained  from  this  model,  frequently 

considered  to  lay  in  the  range   (0.0001  –  0.001) 
g.cm-3, are actually estimated to be closer to 0.0003 
– 0.0004 g.cm-3, with a k=2 coverage factor.

1. Introduction

   Vibrating  tube  densimeters  are  widely  used  to 
perform high pressure measurements of the density 
of  fluids for industrial  and scientific  purposes.  The 
basic principle is to measure the vibrating periodτ, of 
a hollow u-shaped tube filled with the fluid of interest 
at  the  desired  conditions  of  pressure,  p,  and 
temperature T. The vibrating period is related to the 
mass of the tube, and especially to the density of the 
fluid,  ρ,  by  means  of  mechanical  considerations. 
What  we  call  “model”  here  is  the  mathematical 
relation  that  gives  ρ as  a  function  of  τ and  the 
conditions T and p. 
   Different types of mathematical models for both 
the calibration of a vibrating tubes and the density 
calculations  can  be  used,  see  [1-8]  for  a  non 
exhaustive  but  rather  recent  overview.  A  detailed 
explanation of the different models can be found in 
[3]. This reference, along with [4] and [5], describes 
completely  the model  that  is  considered here.  We 
shall  only  repeat  some  parts  of  the  mathematical 
framework.  All  the  models  require  measurements 
performed on some reference fluid to be properly set 
or  calibrated.  The  classical  procedure  commonly 
uses water and nitrogen as the reference fluids to 
set  the  value  of  two  pressure  and  temperature 
dependent functions.   
  The “Forced Path Mechanical Calibration” (FPMC) 
model [3], which consists of a calibration formula for 
the VTD and, at the same time, a measurand model 
for  the calculation of  the density,  is  considered in 
this work. The model is as follows [3]:

T , p=M T , p∗[Kr T , p 2 /0
2 –1 ]  (1)

where  M(T,p) and  Kr(T,p) are  determined  from 
measurements  of  τ for  pressurized  water  along 
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isotherms and τ0, the period of vibration of the tube 
under vacuum, thus employing a single calibration 
fluid. In the practice, the functions M (the fraction of 
the mass to the internal volume of the tube) and Kr 
(the  reduced  stiffness  of  the  tube)  contain  semi-
empirical  parameters  to  be  adjusted  from  a 
calibration procedure:

M T , p =rml00 f T , p /exp−1 p−1 /2 2 p
2
  (2)

K r T , p =g T , p exp −31 p−3/ 22 p
2
    (3)

  The parameters  rml00 (the fraction of the material  
mass  of  the  tube  to  a  reference  length  under 
vacuum)  and  1, 2 (the  coefficients  of  a  linear 
approximation  of  the  isothermal  expansion  of  the 
material of the tube with pressure) are obtained from 
a non linear least square fit of eq. 1 to the reference 
data  of  the  density  of  water  at  various  pressures 
along  near  isotherms.  The  reference  equation  of 
state for water (IAPWS-95 formulation [9]) is used to 
obtain the reference density values for this purpose 
at  each  measured  T and  p.  The  functions  f (the 
inverse elementary volume of a section of the tube) 
and  g (the  relative  inertial  moment  of  the  right 
section  of  the  tube)  are  rather  complex  T,  p 
dependent  expressions  that  where  obtained  from 
mechanical  considerations  and  are  not  subject  to 
further parametrization  [3] . These functions are the 
so called “forced paths” in this model.
   To our knowledge, the propagation of uncertainties 
in  measured densities with  the  FPMC model,  has 
only been performed by using the differential method 
or direct Monte Carlo calculations according to [11]. 
An  example  of  this  kind  of  analysis  was  recently 
published in [4],  and is the only available study of 
this kind for the FPMC model. The authors report an 
expanded  uncertainty  in  density  of  the  order  of 
0.0002 g.cm-3 for the calibration fluids.
   When using the differential method, only a subset 
of the required partial  derivatives in the propagation 
formula can reasonably be obtained analytically due 
to the complexity of the functions  f and  g. Another 
drawback of this method is that the uncertainty in the 
“forced path” functions of the model are very hard to 
estimate since the mechanical properties of the steel 
from  which  the  tube  is  made  do  not  have  their 
uncertainties  reported.  We  consider  more 
appropriate to apply the GUM [10] to calculate the 
propagation of uncertainty of the measured values, 
and this is the aim of the present work. 
  For this purpose we shall  first  briefly explain the 
experimental  framework  and  the  measurement 
procedure for the calibration of the densimeter with 
water and vacuum conditions, and for the common 

measurements on compressed liquids. From this an 
uncertainty budget can be set. Then the tools that 
are used to do the propagation of uncertainties as 
stated in the framework of the “GUM” [10,11] will be 
presented along with the obtained results.

2. Experimental

   A detailed overview of the experimental framework 
is  available  in  [5,  12],  from  which  we  summarize 
some  relevant  information  for  our  purpose.  The 
experimental setup is based on a commercial DMA 
512-P high pressure vibrating tube cell.  The DMA 
cell  is  temperature  controlled  by  means  of  a  PID 
regulator and a has a stability of 0.002 K which can 
be reached within several minutes. The temperature 
is  measured within a thermometric well between the 
arms of the U-shaped tube by means of  a Pt-100 
thermometer which is regularly calibrated against a 
F300 bridge or secondary reference thermometers 
following  the  EIT90.  The  overall  uncertainty  in  T, 
measured by an ASL F250 thermometer, is 0.03 K.
   Two pressure transducers Druck®-PMP 4060, with 
respective measurement scales up to 138 bar and 
up to 689 bar are used to measure the pressure of 
the fluids within the tube. They are placed within an 
insulated  brass  block  to  avoid  fast  temperature 
fluctuations that could affect their stability, and their 
positions with respect to the DMA cell are set so that 
the  fluid  column  does  not  affect  the  pressure 
measurements.  Both  transducer  are  calibrated 
against a Desgranges & Huot® dead weight gauge 
(5304 S2, ± 0.005 % F.S. precision up to 1380 bar). 
The mass to pressure conversion coefficient of the 
gauge is corrected to the local gravity (Mexico City). 
The  medium  pressure  transducer  has  a  standard 
deviation of 0.013 bar from 1.0 bar to 150 bar, and 
the high pressure transducer standard deviation is 
about 0.1 bar  from 50 bar to 700 bar. 

2.1. Data acquisition
  The  data  acquisition  system includes  the  digital 
thermometer  (ASL-F250),  a  6.5  digits  voltmeter 
(HP34401-A)  and  a  10  digits  225  MHz  universal 
counter  (HP53131-A)  for  the  measurement  of  the 
period  of  vibration  from  a  electromechanical 
converter attached to the tube. The data acquisition 
is sequential in  p,  T and τ.  A data point  is currently 
recorded every 3.5 s. Measurements of  τ(T,  p) are 
performed  by  electronically  forcing  the  digital 
counter  to  provide  a  seven  digits  stable  value  at 
stable T and p in approximately 3 s with the last digit 
fluctuating  in  the  range  corresponding  to  period 
variations from 2*10−6 ms to 5*10−6 ms. To reach this 
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it  is  necessary to  prefer  quasi-static  measurement 
procedures.

2.2. Procedures
  The periods of vibration of the tube under vacuum 
τ0  , necessary for the FMPC model,  are measured 
first for each isotherm.  

  Figure  1,  presents  the  measurements  of  this 
variable  for  this  study.  The  mean  temperature  is 
323.329  K with  a standard deviation of  0.0063  K. 
The  period  of  vibration  has  a  mean  value  of 
3.9294433  ms with a standard deviation of 3.7*10-6 

ms.  This  example  is  fully  representative  of  the 
measurements, with a noticeable correlation of the 
two variables corr(T,τ0)=0.8516 in this case. Vacuum 
is  achieved by means of  a primary vacuum pump 
which provides pressures under 1 Pa.
    For high pressure measurements, the pure fluids 
contained in a variable volume cell are loaded, free 
of  air  (e.g.  previously  degassed),  to  the  vibrating 
tube at the highest pressure (700 bar), by means of 
a  manual  pressure  generator  (HIP-50-6-15).  The 
measurement  procedure  consists  in  successive 
stabilizations of the state variables (T, p) followed by 
decompressions of the liquid. Each decompression 
affects the temperature stability, even with low flow 
rates (≤0.05 bar.s−1). It is necessary to have a high 
stability in  T,  to achieve the best stability in  τ . The 
behavior  of  τ(T) and  p(T) at  stable  T are  usually 
correlated and the  sensitivity  of  τ is  slightly  lower 
than that of p under fluctuations of the temperature.
   This is illustrated at two pressures ~700 bar and 
~20  bar in  Figures  2  and  3  respectively.  The 
fluctuation of τ is about 4.10−6 ms around the mean 
in each case. At 700 bar the temperature stability is 
0.002 K around the mean, and at 20 bar, the stability 

in T is 0.01 K. At each measured pressure, a sample 
region  can  be  defined  where  all  the  measured 
variables are almost simultaneously stable. 

   A single representative data point can be extracted 
from this subset with a definite mean and standard 
deviation. The correlation between the variables can 
also be evaluated. In this case at 700 bar, corr(T,p) 
= 0.297, corr(T,τ) = 0.2693 and corr(τ,p) = 0.6554. 
At 20 bar, corr(T,p) = -0.181, corr(T,τ) = 0.6652 and 
corr(τ,p) = -0.004.

    In figure 4 we show the complete isotherm at 
~323 K measured on water (HPLC grade from Merk 
Mexico)  for  the  purpose  of  the  calibration  of  the 
densimeter. The measurement procedures for other 
fluids of unknown density are performed in the same 
way.  Measurements  on dehydrated  and  degassed 
acetonitrile (purity 99.5 % from Merk, Mexico) were 
performed at about 323 K and considered here.
  Figure  5  shows  the  behavior  of  the  measured 
isotherm in the plane (p, ρ).
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Fig.  1: Measurement of the period of vibration under 
vacuum around 323.33 K.

Fig. 2: Stable data point at ~700 bar (water, ~323.15 K).

Fig. 3: Stable data point at ~ 20 bar (water, ~323.15 K).
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  The densities of acetonitrile are much lower than 
that  of  water  and  this  fluid  is  slightly  more 
compressible. This is a good opportunity to test the 
capacity of interpolation of the FPMC model.

3. Uncertainty Budgets

  To obtain the propagated uncertainty in densities in 
the  twofold  aspects  of  eq.  1,  calibration  and 
measurements,  we  analyze  first  the  individual 
uncertainties  in  the  measured  variables  and  then 
perform  the  propagation  with  both  the  standard 
GUM  formula  [10],  and  the  Monte  Carlo  Method 
(MCM) [11, 13]. In both cases we take into account 
the correlations between the measured variables (T,  
p,  τ) and  between  the  parameters  of  the  FPMC 
model (eq. 1). The uncertainty budget we propose is 
shown in Figure 6. 

   The measured variables  p and T are affected by 
three types of uncertainties. The variance (var.) and 
calibration  error  (cal.)  are  assigned  a  normal 
distribution. The resolution (res.) of the instruments 
are assigned uniform distributions. The contributions 
(var.) and (res.) are also encountered in variables τ 
and  τ0.  Ηowever (cal.)  is  not considered since the 
periods appear as a ratio in the model. The accuracy 
of the value is not important, what is important is that 
it  should  be  the  same  for  both  variables.  This  is 
fulfilled  since  they  are  measured  with  the  same 
instrument. 

   Another important source of uncertainty is that due 
to the errors and correlations in the parameters of 
the  model  that  are  obtained  by  fitting  it  to  the 
reference  densities  for  water.  The  standard 
deviations (std. dev. In Figure 6) of each parameters 
and  their  correlation  matrix  are  obtained 
asymptotically  from  the  non  linear  Levenberg  - 
Marquardt  fitting  algorithm,  and  contribute  to  the 
uncertainty  in  the  density.  The  variability  of  these 
parameters  due  to  the  error  in  the  reference 
equation of state for water must also be taken into 
account. The contribution (vari.) is obtained for each 
parameter,  by  fitting  the  model  two  times  to  two 
different  set  of  reference  densities.  In  the  region 
where the IAPWS-95 is used, the uncertainty is less 
than  = 0.003 % from 1 bar to 1000 bar. So we 
fitted the FPMC model to ref.

up
=EoS  1/100  and 

then  to ref.
dwn

=EoS 1−/100  .  Between these two 
fits,  only  the values of  the parameters vary.  Their 
standard deviations and correlation are maintained 
constant. The difference between the values of the 
parameters  can  then  be  used  to  construct  a 
triangular  distribution  that  will  propagate  in  the 
uncertainty  in  density.  These  are  the  only 
contributions  that  are  taken  into  account  for  the 
uncertainty in density during the calibration process.
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Fig.  4:  Measurements  on  water  for  calibration 
purposes. Densities are from the IAPWS-95 EoS.

Fig.  5:  Measurements  on  acetonitrile  for  illustration  
purposes (densities calculated from the FPMC model.)

Fig.  6:  Tree  graph  of  the  uncertainty  contributions  
through the FPMC model.
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  When doing measurements other than calibration 
ones, all the previous contributions are involved. The 
new conditions for  the stability  and accuracy of  T 
and  p are  evaluated again.  It  is  not  necessary  to 
consider any uncertainty due to the reproducibility of 
these variables since the measurements at a given 
pressure  and  temperature  are  not  subjected  to  a 
calibration  at  the  same  conditions  (this  is  an 
important  feature  of  the  FPMC model).  When the 
fluid  under  study  is  not  water,  the  periods  of 
vibrations are not the same as during the calibration 
at the same conditions, so there is no reproducibility 
problems in the values of the periods. However it is 
shown from various authors that the values of  the 
periods are not reproducible in time within a given 
interval. This stability, represented by the triangular 
distribution  (stab.)  in  Figure  6,  is  an  important 
contribution  to  the  uncertainty  in  regular 
measurements.  These  aspects  are  actually  under 
study. Under careful measurements of τ0 in time, we 
could determine that 12 hours after a change in the 
temperature  of  the  vibrating  tube,  the  vibrating 
period  reach  a  new stable  value  within  2*10-5 ms 
from the previous one. This is the contribution to the 
uncertainty  in  τ that  we  consider  in  this  work  to 
propagate  the  uncertainty  in  the  density  of 
acetonitrile.

4 Results

4.1 Fitting of the FPMC model

  The  econometrics  oriented  program  Gretl 
(validated  against  NIST  reference  data  set)  was 
used  to  fit  the  FPMC  model  to  the  reference 
densities of water calculated at each (T,p) conditions 
for a total of 3627 data points at 14 different nominal 
pressures  (see  Figure  4).  the  results  are 
summarized in Table 1.

Table  1:   Parameters  of  the  FPMC  model  fitted  at  
~323.15 K. (Reference IAPWS-95 [9])
Parameter estimate std. error

  rml00    (g.cm-1) 0.330585 4.51*10-07

1   (bar-1) 9.91201*10-7 3.39*10-10

2   (bar-2) 8.58958*10-11 9.41*10-13

Sum of the Squared Residuals: 4.14*10-6 g.cm-3 

Standard Error of the regression   3.4*10-5 g.cm-3 

  
  The variability of the parameters with the error in 
the reference equation of state is summarized in the 
following Table 2:

Table  2.:  Variability  of  the  parameters  of  the  FPMC 
model and combined uncertainty (~323.15 K). 

Estimate 

ref
dwn

Estimate 

ref

Estimate 

ref
up

  rml00 0.330575 0.330585 0.330595

1
9.912*10-7 9.912*10-7 9.912*10-7

2
8.5894*10-7 8.5896*10-7 8.5893*10-11

Difference: 
       d

d/√24 = u1 Std. Err. = u2 uc=u1
2u2

2

 rml
00 2*10-5 4.082*10-6 4.51*10-7 4.11*10-6

1
0.0 0.0 3.39*10-10 3.39*10-10

2
~0.0 ~0.0 9.41*10-13 9.41*10-13

    The correlation and covariance matrix between 
the  parameters  were  obtained,  and  are  given  in 
Table 3:

Table  3.:  Correlation  and  Variance  –  Covariance  
Matrix of the FPMC parameters (~323.15 K). 

4.2 Analytical propagation 
  
   At each pressure, a table can be set to evaluate 
the  uncertainties  in  each  of  the  four  measured 
variables (T, p, τ, τ0 ). In Table 4, we present only the 
data for the two extreme pressures at 20 and 700 
bar. Each experimental situation displays its own set 
of  uncertainty  values.  This  makes  a  systematic 
treatment  difficult.  However  we  show  that  the 
variations  in  the  propagated  combined  uncertainty 
from one pressure to the other are really low. To do 
this  we used the propagation formula  provided by 
the  GUM  [10]  and  calculated  the  required  partial 
derivatives by means of the symbolic mathematical 
processor wxMaxima. The use of such a program 
is of great help for our purpose,  because it easily 
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allows to handle the complex algebra and provides a 
reliable  and  quick  way  to  manage  the  calculation 
with a minimum errors. The use of Maxima for our 
specific purpose is described elsewhere [15, same 
symposium]. 

Table 4.: Uncertainty in the variables at two pressures  
(~323.15 K). 
Uncert. T (K) P (bar) τ (ms) τ0 (ms)

Value → 49.982 690.56 4.143411 3.929362

Distrib. 

Var. Normal 0.001153 0.10994 1.83*10-6 5.76*10-7

Cal. Normal 0.03 0.276 0.0 3.74*10-6

Res. Uniform 0.000288 0.0 2.88*10-8 2.88*10-8

uc Normal 0.030024 0.2973 1.83*10-6 3.78*10-6

Uncert. T (K) p (bar) τ (ms) τ0 (ms)

Value → 50.059 20.099 4.136722 3.929399

Distrib.

Var. Normal 0.005224 0.0176 1.56*10-6 2.61*10-6

Cal. Normal 0.03 0.008 0.0 3.74*10-6

Res. Uniform 0.000288 0.0 2.88*10-8 2.88*10-8

uc Normal 0.03045 0.0193 1.56*10-6 4.56*10-6

  Based on a total  of  eight  experiments as those 
reported  in  Table  4,  at  (~20,  ~100,  ~200,  ~300, 
~400,  ~500,  ~600  and  ~700)  bar,  the  combined 
uncertainties  were  calculated  for  both  the  non 
correlated  and correlated  variables  situations.  The 
results are shown in Figure 7.

  The combined uncertainty has no clear tendency 
with pressure along the near isotherm. The effect of 
the  correlation  of  the  variables  is  noticeable  and 

changes the value of uc from about 0.000085 g.cm-3 

to 0.000098 g.cm-3. As shown in Figure 8, the first 
value  is  fully  consistent  with  the  amplitude  of  the 
residuals. The second value, taking into account the 
correlations  in  the  variables  is  closer  to  the 
maximum extent of these residuals (e.g. it takes into 
account  the  irreproducibility  in  the  calibration 
measurements).

  Figure  9  shows  the  simulated  uncertainties 
obtained from the correlated variables and assigning 
the  (stab.)  component  of  the  uncertainty  in  the 
periods of vibrations. 

   A slight decreasing dependency with pressure is 
observed at constant values of τ. However, it should 
be  reminded  that  the  period  decreases  also  with 
pressure.  So  it  is  better  to  read  Figure  9  along 
horizontals for a given fluid. For instance, for a given 
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Fig.  7:  Combined uncertainty at  8 pressures from the 
GUM propagation formulas.

Fig.  8:  Absolute  residuals  of  the  FPMC fit  on  water  
reference densities.

Fig.  9: Combined uncertainty with correlated variables  
and the influence of the stability in τ 0, as a function of  
pressure and τ  a 323.139 K.
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fluid  such  as  acetonitrile  for  which  the  period  lay 
between 4.08 to 4.11 ms in the pressure range (60, 
700) bar, the uncertainty in the density should be in 
the  range  (0.000179,  0.000180)  g.cm-3.  We check 
this hypothesis and compare the  densities obtained 
from  our  measurements  on  acetonitrile  with  the 
equation of state for this fluid [14]. The results are 
shown in Figure 10.

4.3 Monte Carlo Simulations

   The use of the standard propagation formula from 
the  GUM  [10],  implies,  in  this  case  as  in  many 
others, a huge amount of calculations. Tests have 
been made with  Maxima to  evaluate  the  eventual 
influences  of  second  order  corrections  in  the 
propagation formula. This involves the calculation of 
the (7,7) Hessian matrix and another (7,7) subset of 
the  third  order  tensor  of  the  third  order  partial 
derivatives of the model with respect to the seven 
variables  (T,  p,  τ,  τ0,  γ1,  γ2,  rml00).  At  700  bar the 
result was 6.72*10-17 g.cm-3 and at 20 bar, 2.90*10-18 

g.cm-3.  There  is  a  great  deal  of  effort  to  assess 
whether  the  second  or  higher  order  of  the Taylor 
series  are  contributing  to  the  final  uncertainty. 
Fortunately  a  new  approach,  using  Monte  Carlo 
simulations  for  the  the  propagation  of  uncertainty 
according has been published in the suplement 1 of 
the GUM [11]. The code for Matlab was published 
recently [13] and can be used directly in Octave 
which  has  been  done  in  this  work.  To  generate 
distributions of  correlated variables we applied the 
following sequence that can be adapted directly to 
the existing code.

1)  generate  normalized  distributions  for  each 
variable  and  parameter  in  the  model,  2)  The 
variance  –  covariance  matrix  is  defined  from  the 
previous analysis for the set of variables, 3) obtain 
the  Cholesky  decomposition  of  this  matrix,  4) 
generate the correlated distributions of the variables 
with desired coefficients of correlation by means of 
the  Cholesky  transformation,  5)  finally  recenter 
these distributions around the desired mean values. 
   We performed the simulations at 4 pressures; (20, 
300,  500 and 700)  bar.  The  results  are  shown in 
Figure 11.

   The  results  obtained  from  the  Monte  Carlo 
simulations  compare  favorably  with  the  analytical 
method.  They  were  obtained  (with  a  stable  95  % 
confidence interval) in little less than 10 s occupying 
the order of 109 draws of 105 data, using an AMD-
AthlonX2, 64 bits processor. The advantage of the 
Monte Carlo method, apart from the fact that it does 
not require tedious algebraic calculus, is that it also 
provides the distribution of these uncertainties and 
the  confidence  interval.  In  this  case  no  difference 
with  a  normal  distribution  was  observed  in  the  4 
numerical  experiments.  All  of  these  experiments 
have terminated with a numerical  precision of  10-6 

which is sufficient to validate the results.

5 Conclusions

   This study shows that the FPMC model, for the 
calibration and measurements of density by means 
of  the  widely  used  vibrating  tube  densimeters, 
provides a combined uncertainty in the state region 
of the compressed liquids (in this case in the range 
of  density  (0.75,  1.01)  g.cm-3)  of  little  less  than 
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Fig. 10: Comparison of the densities of acetonitrile with  
an EoS [14], nivel of uncertainty.

Fig.  11: Comparison between Monte Carlo simulations  
and analytical calculations for the combines uncertainty  
in the density at 323 K.
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0.0001  g.cm-3 during  calibrations  and  about 
0.000185 g.cm-3 in the case of measurements. With 
a coverage factor of 2 (95.4 % confidence interval), 
which  is  commonly  used  for  this  kind  of 
measurements,  the  expanded  uncertainty  reaches 
about  0.00037  g.cm-3,  which  is  well  within  the 
uncertainty  reported  by  various  authors.  Both  the 
analytical method and Monte Carlo simulations have 
been  used  as  suggested  by  the  GUM  and  its 
supplement. The Monte Carlo simulations perfectly 
validate the analytical method.
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