ESTIMACIÓN DE LA EMISIVIDAD DE UNA CAVIDAD CILÍNDRICA PARA LA CALIBRACIÓN DE TERMÓMETROS DE RADIACIÓN

J. Efraín Hernández-López. Centro Nacional de Metrología de México km 4,5 Carretera a los Cués, El Marqués, Querétaro. C. P. 76246, México ehernand@cenam.mx

Resumen: Se presenta un método para estimar la emisividad efectiva, y su incertidumbre, de una cavidad cilíndrica. La emisividad efectiva de la cavidad se caracteriza por un parámetro que relaciona la longitud y el radio del cilindro. Este método puede ser implementado de manera práctica por los laboratorios que ofrecen el servicio de calibración de termómetros de radiación.

1. INTRODUCCIÓN

El Comité Consultor de Termometría (CCT) de la Oficina Internacional de Pesas y Medidas (BIPM) tiene un grupo de trabajo (WG5) para atender los asuntos de termometría de radiación. Este grupo de trabajo emitió un documento [1] relacionado con el análisis de incertidumbre en la calibración de termómetros de radiación (TR) que operan por debajo del punto fijo de la plata (962 °C).

Una alternativa de calibración de un TR es vía una cavidad isotérmica de temperatura variable que se aproxime a un cuerpo negro. En este caso, se requiere conocer la emisividad efectiva y su incertidumbre de la cavidad, que se supone isotérmica.

El documento contiene un ejemplo de una cavidad tipo cilindro-cono; en este articulo se presenta el caso de una cavidad cilíndrica; se muestra la forma en que se estima el valor de emisividad y su incertidumbre.

El modelo es útil porque representa un diseño de cavidad típicamente usada y, además, permite establecer parámetros para construcción de cavidades que cumplan requisitos para reducir en lo posible la incertidumbre

2. ESTIMACIÓN DE LA EMISIVIDAD DE UNA CAVIDAD CILÍNDRICA CON UNA TAPA PLANA PERPENDICULAR A SU EJE

Para una cavidad cilíndrica con uno de los extremos abierto, de radio r, longitud l, y construida a partir de un material de emisividad ε_w , la emisividad efectiva de la cavidad ε_c puede estimarse de una manera simple y rápida a través de la siguiente relación [2]

$$\varepsilon_{c}(\varepsilon_{w},l,r) = 1 - \frac{1 - \varepsilon_{w}}{\varepsilon_{w}} \frac{1}{1 + (l/r)^{2}}$$
(1)

En consecuencia se puede obtener una estimación de la incertidumbre, según la Guía para la estimación de incertidumbre en la medición [3] dada por

$$u^{2}(\varepsilon_{c}) = \left(\frac{\partial \varepsilon_{c}}{\partial \varepsilon_{w}}\right)^{2} u_{\varepsilon w}^{2} + \left(\frac{\partial \varepsilon_{c}}{\partial l}\right)^{2} u_{l}^{2} + \left(\frac{\partial \varepsilon_{c}}{\partial r}\right)^{2} u_{r}^{2}$$
(2)

Los coeficientes de sensibilidad se pueden escribir:

$$\frac{\partial \varepsilon_{c}}{\partial \varepsilon_{w}} = \frac{1}{\varepsilon_{w}^{2}} \cdot \frac{1}{q^{2}}$$
$$\frac{\partial \varepsilon_{c}}{\partial l} = \frac{2(1 - \varepsilon_{w})}{\varepsilon_{w}} \cdot \frac{1}{rq^{3}}$$
$$\frac{\partial \varepsilon_{c}}{\partial r} = -\frac{2(1 - \varepsilon_{w})}{\varepsilon_{w}} \cdot \frac{1}{rq^{2}}$$
(3)

donde q = l/r es la razón longitud/radio de la cavidad cilíndrica y q >> 1.

Consideremos por ejemplo $\varepsilon_w = 0.85 \pm 0.10$, para el grafito [4], entonces la emisividad estimada junto con su incertidumbre que se obtiene como función de *q*, se muestra en la figura 1.

De la gráfica se observa que la incertidumbre de \pm 0.10 en el valor de la emisividad del grafito resulta en un valor de la emisividad efectiva de la cavidad 0.998 \pm 0.001 si *q* es mayor que 10.

Figura 1. Variación de la emisividad de la cavidad con q. La curva superior e inferior corresponde a 0.95 y 0.75 de ε_w , respectivamente; mientras que la curva central es para ε_w = 0.85.

3. CONSIDERACIONES PRÁCTICAS EN UN LABORATORIO

Los laboratorios cuentan con hornos y baños de temperatura controlada que pueden utilizarse para alojar cavidades y aprovecharse para calibrar termómetros de radiación.

Si las cavidades tienen una emisividad efectiva cercana a uno, pueden ser consideradas como cuerpos negros.

Un material comúnmente usado para construir cavidades de cuerpo negro es el grafito porque es de precio accesible y se puede maquinar fácilmente.

Una alternativa es construir una cavidad con un metal y cubrir su interior con una pintura de emisividad conocida en un intervalo de longitud de onda de interés; CENAM está desarrollando un sistema para su medición.

Para que cumpla su propósito, la cavidad debe tener dimensiones, radio y longitud internas, que permitan que el diámetro del campo de visión (FOV) del termómetro de radiación sea menor que el diámetro del fondo de la cavidad – el FOV es una especificación del termómetro de radiación que se proporciona en grados.

3.1. Ejemplo

Supóngase que se tiene un baño líquido que opera de temperatura ambiente hasta 95 °C, con una profundidad de 40 cm. Se quiere usar para calibrar termómetros con FOV equivalente a un blanco de 10 mm de diámetro a una distancia de 100 cm, la apertura del termómetro de radiación, que es la de la lente, es 40 mm.

Se cuenta con una pintura con emisividad promedio $\epsilon_{\text{p}}~$ = 0.9 \pm 0.1 en el ancho de banda de operación del termómetro.

Considérese que el radio de la cavidad sea igual 20 mm. Si se usa q = 10, la longitud de la cavidad es $l = q^*r = 200$ mm.

Con la ecuación (1), tomamos una longitud $l = 200 \pm 2$ mm y un radio $r = 20 \pm 2$ mm, la emisividad efectiva es de 0.998 y la incertidumbre estimada es de \pm 0.001.

Ahora verificamos que el diámetro de la cavidad no obstruye el cono formado por la lente del TR y el diámetro del blanco. Para ello nos auxiliamos del esquema de la figura 2 a); en éste se indica que los ejes del TR y de la cavidad están alineados.

Con la altura $h = r_{lente} - r_{blanco}$ y la distancia *D*, que se ilustran en la figura 2 b), podemos determinar la altura *x* a la distancia *l*, que es la longitud de la cavidad. La siguiente relación sencilla nos ayuda con ésta labor

$$\frac{h}{D} = \frac{x}{l} \tag{4}$$

De la figura 2 b) se puede deducir que el diámetro del cono ϕ_{cono} a la distancia *l*, la longitud de la cavidad, es

$$\phi_{cono} = 2*(x+r_{blanco}) \tag{5}$$

En nuestro ejemplo, la distancia *D* es de 1000 mm, la longitud de la cavidad *l* es de 200 mm, el radio de la lente es de 20 mm y el radio del blanco es 5 mm, así que *h* = 20 – 5 = 15 mm aplicamos (4), y obtenemos *x* = 3 mm, y con (5) el diámetro del cono es $\phi_{cono} = 2^*(3+5) = 16$ mm, que es menor que el diámetro de cavidad.

Figura 2 a) Esquema del termómetro de radiación y la cavidad. b) Ampliación de la parte superior del eje del TR.

4. CONCLUSIONES

Se presentó un modelo y su uso práctico que permite a un laboratorio aprovechar parte de su infraestructura para la calibración de termómetros de radiación.

Para lograrlo se tiene que diseñar una cavidad sujeta a sus condiciones particulares es decir, a las dimensiones de los baños y hornos con que cuenta el laboratorio y al tipo de termómetros de radiación que quiera calibrar.

AGRADECIMIENTOS

El autor agradece la entusiasta participación de sus colegas: el Dr. Daniel Cárdenas García y el Dr. Edgar Méndez Lango, de la División Termometría del CENAM

REFERENCIAS

- J. Fisher, P. Saunders, M. Sadli, M. Bautuello, et al.; Uncertainty budgets for calibration of radiation thermometers below the silver point; CCT-WG5 on Radiation Thermometry, Final version, April 2008.
- [2] G. Bauer, K. Bischoff; Evaluation of the emissivity of a cavity source by reflection measurements; Applied Optics; Vol. 10, 1971, pp 2639-2643.
- [3] Evaluation of measurement data -- Guide to the expression of uncertainty in measurement; JCGM 100:2008 GUM 1995 with minor corrections.
- [4] N. L. Perovic, L. P. Zekovic, K. D. Maglic; Freezing temperatures of silver and copper as fixed points for optical pyrometers calibration; Proceedings of TEMPMEKO 1996; pp 311-316