NIST/Time and Frequency Methology

Inpacts of Pleciston Interation Englished Viewsentens

Chief, NIST Time and Frequency Division Boulder, Colorade, USA

NIST Time and Frequency Division, Boulder, Colorado, USA

Develop and distribute the highest accuracy time and frequency measurements to support commerce, research, and the general public.

tf.nist.gov

NIST-F1 Atomic Fountain Clock Primary Frequency Standard for the United States

NIST-F1 laser-cooled fountain standard "atomic clock" 1 second is defined as the duration of 9,192,631,770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the ¹³³Cs atom.

Current accuracy (uncertainty):

- 3 x 10⁻¹⁶ second.
- 25 trillionths of a second per day.
- 1 second in 100 million years.

Equivalent to measuring distance from earth to sun (150,000,000 km) to uncertainty of about 45 μ m (less than thickness of human hair).

NIST Mercury Ion Clock and Aluminum Ion Logic Clock Research Frequency Standards

- Research atomic clocks at NIST already at 8 x 10⁻¹⁸ uncertainty.
- 1 second in about 4 billion years.
- Rapidly improving.

Equivalent to measuring distance from earth to sun (150,000,000 km) to uncertainty of about 1 μ m (size of a bacterium).

Why worry about precision time and frequency metrology?

Telecommunication Networks

Global wireline and wireless revenue in 2007: \$US 1.65 trillion. Projected global wireline and wireless revenue in 2012: \$US 2.3 trillion. (2/3 of projected 2012 revenue in wireless systems)

Source: Verizon

Electric Power Generation and Distribution

Synchronization to about 1 microsecond per day (10⁻¹¹) for efficiency, fault location, etc.

US electric power sales in 2008: \$US 360 billion.

Smart Grid: Increased need for real-time, precision information on electric power generation, utilization, and distribution.

Global Navigation Satellite Systems (GNSS)

- GPS US
- GLONASS Russia
- Galileo European Union
- COMPASS China
- Quasi-Zenith Satellite System Japan
- Indian Regional Navigational Satellite System – India

Synchronization to about one nanosecond per day (10⁻¹⁴).

• Etc.

Broad Range of Civilian/Commercial GNSS Applications

Global Navigation Satellite Systems (GNSS)

US civilian/commercial economic benefits estimated 2008: \$US 70 billion.

Global civilian/commercial economic benefits estimated 2008: \$US 250 billion.

New applications and impacts rapidly growing...

National security applications: Extremely important, exceptionally high value, difficult to estimate economic impacts/benefits. (Probably equivalent of many trillions of US dollars...)

Source: US National Executive Committee for Space-Based Positioning, Navigation, and Timing

Electronic Financial Transactions

- US Financial Industry Regulatory Authority (FINRA) rules for electronic financial transactions. Rules reviewed and approved by US federal government.
- Rules apply to more than 800,000 businesses conducting billions of transactions daily through New York Stock Exchange, NASDAQ, and other venues.
- All FINRA member electronic and mechanical time-stamping devices must remain accurate to within 1 second of NIST time.
- Hundreds of billions of dollars of daily electronic financial transactions in US.
- Hundreds of trillions of dollars of financial transactions per year in US.

Science: Spacecraft Communications, Astrophysics

NASA Deep Space Network

Very Long Baseline Interferometry

Timing/synchronization to as stringent as 1 picosecond per day (10^{-16}) .

Source: NASA

Fundamental Science

$$T = \frac{T_0}{\sqrt{1 - \frac{v^2}{c^2}}} \approx T_0 (1 + \frac{v^2}{2c^2}) \qquad v << c$$

Time dilation (special relativity)

$$T = \frac{T_0}{\sqrt{1 - \frac{2 GM}{Rc^2}}} \approx T_0 (1 + \frac{GM}{Rc^2}) \qquad \frac{2 GM}{R} << c^2$$

Gravitational time dilation (general relativity)

$$lpha = e^2/4\piarepsilon_0\hbar c$$

Are fundamental constants changing over time? (fine structure constant)

Fundamental Metrology: International System of Units (SI)

Time/frequency impacts or will impact nearly all other SI units

SI Base Unit	Approx. Relative Uncertainty	Depends on SI Second
Second	10 ⁻¹⁵	Yes
Meter	10 ⁻¹²	Yes
Kilogram	10 ⁻⁹	Future SI redefinition
Ampere	10 ⁻⁷	Yes
Mole	10 ⁻⁷	Future SI redefinition
Kelvin	10 ⁻⁷	Future SI redefinition?
Candela	10 ⁻³	Yes

- Accurate timing and synchronization are a crucial part of the infrastructure of modern technology.
- Used continuously every day although most users remain unaware of the use or impacts (part of the infrastructure).
- Needs of different users vary enormously range of 10¹⁵ (fifteen orders of magnitude).
 - Timestamping of electronic financial transactions 1 second precision.
 - Global Navigation Satellite Systems applications 10⁻¹⁵ second precision.
- NIST and other NMIs provide broad range of timing and synchronization measurement services to meet this very broad range of needs.
 - Highest precision/accuracy for the most stringent requirements.
 - Easiest use/lowest cost (free) for the broadest applications.

Primary Frequency Standard and NIST Time Scale Realization of SI second

NIST-F1

Hydrogen Maser & Measurement system

Time and Frequency Distribution Services

Radio broadcasts

Satellites

Noise metrology

Primary Frequency Standard and **NIST Time Scale** Realization of SI second


```
NIST-F1
```


Hydrogen Maser & Measurement system

Time and Frequency Distribution Services

Ňetworks

Satellites

Noise metrology

Primary Frequency Standard and NIST Time Scale Realization of SI second

NIST-F1

Hydrogen Maser & Measurement system

Research on Future Standards and

Distribution *Mercury ion clock*

Neutral calcium clock

Optical frequency synthesis

Quantum computing

One Model of Unique Role of National Metrology Institute

NIST Time Scale and Distribution

Calibrated by NIST-F1 primary frequency standard

International coordination of time and frequency: UTC, TAI, etc.

NIST Time and Frequency Metrology

- NIST-F1 primary frequency standard periodically calibrates NIST time scale.
- NIST-F1 also reports frequency information to BIPM, along with approximately 12 other primary frequency standards worldwide.

- NIST time scale is the source of NIST's realization of Coordinated Universal Time, UTC(NIST).
- NIST time scale reports time of day information to BIPM, along with approximately 60 other timing laboratories world-wide.

• The NIST time scale, periodically calibrated by NIST-F1, is the ultimate source of all NIST time and frequency measurements.

NIST Time and Frequency Distribution

NIST time distribution: Radio

WWVB low frequency broadcast of time code signals. Near Ft. Collins, CO (since 1963).

Sampling of radiocontrolled products automatically set by WWVB time codes.

NIST Time and Frequency Distribution

- NIST Internet Time Service time codes delivered over the Internet.
- 4 billion requests per day.
- Built into common operating systems: Windows, Mac, Linux, etc.
- 23 servers at 19 locations across the US.

• Expected significant growth in need for auditable time-stamping at ever greater timing precision.

NIST Time and Frequency Distribution

Serve the most demanding needs of timing laboratories, research laboratories, telecomm industry, etc.

Provided remotely in the customer's lab.

Global Time Service

- Calibrate remote clock with respect to NIST time via Common-View GPS.
- 10 ns uncertainty.

Frequency Measurement and Analysis Service

- Full measurement system ("black box") with continuous remote monitoring by NIST.
- "In-house" $\Delta f/f \sim 2 \times 10^{-15}$.
- GPS transfer $\Delta f/f \sim 2 \times 10^{-13}$.

SIM Time Network: International Time Coordination

- SIM Time Network.
- Pioneered by CENAM, NIST, NRC-Canada.
 - Based on NIST FMAS experience.
- 14 current partners in North, Central, and South America.
 - Additional partners planned.
- World's only near real-time international measurement system.
- World-class international measurement system available to broad range of national laboratories.

SIM Time Network: International Time Coordination

Real-time Comparison of NIST (USA) and CENAM (Mexico) Time Scales through SIM Network

Real-time international time scale competitive with post-processed BIPM UTC realization (up to several weeks late) with much simpler and less-expensive equipment.

SIM Time Network: International Time Coordination

Real-time Comparison of NIST (USA) and CENAM (Mexico) Time Scales through SIM Network

Real-time international time scale competitive with post-processed BIPM UTC realization (up to several weeks late) with much simpler and less-expensive equipment.

Phase Noise Measurements (Spectral Purity / "Timing Jitter")

- Ultralow noise sources and metrology.
- Increasing applications in communications, navigation, remote detection, ultra-high-speed electronics, national security, etc.

Time and Frequency Distribution Services

Radio broadcasts

Ňetworks

Satellites

Noise metrology

Primary Frequency Standard and NIST Time Scale

NIST-F1

Hydrogen Maser & Measurement system

Research on Future Standards and

and Distribution *Mercury ion clock*

Neutral calcium clock

Optical frequency synthesis

Quantum computing

Frequency uncertainty
$$\sim \frac{\Delta f}{f_0} \cdot \frac{1}{\sqrt{\tau}} \cdot \frac{1}{\sqrt{N}}$$

$$\frac{f_0 \text{ optical}}{f_0 \text{ microwave}} \approx \frac{10^{15}}{10^{10}} \approx 10^5$$

 J_0

$$\mathcal{T}$$
 = observation time

N = number of atoms

NIST research atomic clocks

Al+	1124 THz (1124 x 10 ¹² Hz)	
Hg⁺	1024 THz	
Yb	520 THz	> Optical
Ca	456 THz	
Sr	430 THz	J

Microwave 0.0092 THz Cs

What is a clock?

Repeating Motion + Counting Mechanism

Earth Rotation Pendulum Swing Quartz Crystal Vibration Cesium Atomic Transition Optical Atomic Transition

Sundial

Clock Gears and Hands

Electronic Counter

Microwave Counter

?? Counter ??

Femtosecond Laser Frequency Combs: Key to Optical Clocks

Femtosecond Laser Frequency Combs: Key to Optical Clocks

Improvements in Primary Frequency Standards: Optical Clocks

Improvements in Primary Frequency Standards: Optical Clocks

Improvements in Clocks: Quantum "Logic Clock" **Aluminum Ion** "Logic" ion "Clock" ion e.g. Al+ Logic Clock e.g., ⁹Be+ quantized motional-mode coupling ⁹Be⁺ used for cooling, state 29096 seconds of data 10⁻¹³ preparation & readout $7 \times 10^{-15} \tau^{-1/2}$ Hg vs Maser (AVAR) Hg vs AI (AVAR) RF Maser Hg vs AI (THEO1) 10⁻¹⁴ linear Paul Trap EC 10⁻¹⁵ $\Delta v/v$ Al+/Hg+ clocks ²⁷Al+ 1**P** λ=167 nm cooling transition $\Delta f/f \sim 8 \times 10^{-18}$ 10⁻¹⁶ Al⁺ #1 frequency ^{τ = 305} 3P₀ standard in the world. 10⁻¹⁷ **λ=267 nm** clock transition 10¹ 10^{2} 10^{3} 10^{4} 10⁵ 10^{0} time [seconds] 1S_

Improvements in Primary Frequency Standards: Optical Clocks

- High-frequency optical clocks outperform microwave clocks.
- NIST research optical clocks already performing better than 1 x 10⁻¹⁷.
- Potential for accuracy at the 10⁻¹⁸ level, 100 times better than NIST-F1.
- Likely to take many years to realize that potential.

Laser-cooled calcium atoms.

Ytterbium atoms in optical lattice.

Single mercury ion trap.

Al⁺ quantum logic optical clock.

Measure frequency shift by raising clock as little as 10 cm.

Measure frequency shift by moving Al+ ion as slow as walking speed (about 1 m/second).

Extreme precision optical clocks may initially be most useful as exquisitely precise atomic sensors:

- Gravity.
- Magnetic fields.
- Acceleration.
- Temperature.
- Other quantities...

Improvements in Frequency Standards and Clocks

NIST-F1

Opportunities for Improvement?

Improvements in Clocks: Emerging Technologies

Chip-scale atomic clock

Chip-scale atomic magnetometer

Ultraminiature gyroscope

Future atom-based sensors

Improvements in Clocks: Emerging Technologies

Chip-scale atomic clock

Chip-scale atomic clocks:

- $\Delta f/f \ 10^{-11}$ or better.
- Runs on AA battery.
- Potential for low-cost mass production.

Chip-scale atomic magnetometers:

 10⁻¹⁵ sensitivity: SQUID performance with no cryogens.

Ultraminiature NMR gyroscopes:

• Navigation grade (0.002 degree).

Ultraminiature spectrometer

Related devices:

• Ultraminiature spectrometer for telecommunications, chemical identification, atmospheric research, etc.

NIST chip-scale atomic device program since August 2004:

- Three NIST patents.
- More than 60 NIST publications on chip-scale atomic devices.
- Dozens of conference and workshop presentations.

Improvements in Time and Frequency Distribution

Future optical clocks $\Delta f/f \sim 1 \times 10^{-18}$

- Directly compare optical frequencies spanning more than an octave.
- Link optical to microwave frequencies.

- High accuracy.
- Direct reference of optical applications to optical standards.
- New applications.

Crucial topic...

For another talk....

Time, Timekeeping and Time Distribution

- Modern time and frequency metrology results from and has stimulated some of the most interesting and important developments in science and technology over about the past 100 years:
 - Atomic theory.
 - Quantum mechanics.
 - Relativity.
 - Radio (including microwaves).
 - Electronics.
 - Materials science.
 - Lasers.
 - Laser cooling and trapping.
 - Femtosecond laser frequency combs.
 - Etc.
- 104 Nobel Physics Prizes from 1901 through 2010.
 - About 20% directly or indirectly related to science and technology of timekeeping.

Some Nobel Prizes Related to Atomic Time and Frequency Metrology

1943	Otto Stern	Molecular/atomic beam spectroscopy.
1944	Isidor Rabi	Atomic beam resonance technique.
1955	Polykarp Kusch	Magnetic moment of electron; early atomic clocks.
1964	Charles Townes, Nicolai Basov, Alexandr Prokhorov	Quantum electronics, including maser/laser principles.
1966	Alfred Kastler	Optical pumping methods.
1989	Norman Ramsey, Hans Dehmelt, Wolfgang Paul	Atomic clock techniques; trapped ion spectroscopy.
1997	Steven Chu, Claude Cohen-Tannoudji, Bill Phillips	Laser cooling of neutral atoms.
2001	Eric Cornell, Carl Wieman, Wolfgang Ketterle	Bose-Einstein condensate.
2005	Roy Glauber, Jan Hall, Ted Hansch	Laser spectroscopy, including laser frequency combs.

Bill Phillips, NIST

Carl Wieman, CU-Boulder Eric Cornell, NIST

Jan Hall, NIST

NIST Time and Frequency Division Website: *tf.nist.gov*

NIST Time and Frequency Division Website: *tf.nist.gov*

Downloads of PDFs from Division public database

Calendar Year	Number of Publications Posted	Number of PDF downloads
2005	2153	929,064
2007	2295	1,142,783
2009	2396	2,535,653

#1 download in 2009"NIST Time and Frequency Services"Mike LombardiRadio stations, Internet Time Service, etc.127,184 downloads

NIST Time and Frequency Metrology