Institute for National Measurement Standards Institut des étalons nationaux de mesure
Power Quality and Smart Grid
Eddy So Institute for National Measurement Standards National Research Council Canada
Simposio Metrologia Queretaro, Mexico October 29, 2010
Material Research Connell rational de recherches Canada Canada

What is Power Quality?

- IEEE Std 1100-1999: "the concept of powering and grounding sensitive electronic equipment in a manner suitable for the equipment."
- IEC 61000-1-1 in line with IEEE Std 1100-2005: "the ability of an equipment or system to function satisfactorily in its electromagnetic environment without introducing intolerable electromagnetic disturbances".

Power Quality ≈ Voltage Quality
 Power quality is actually the quality of the voltage that is being addressed in most cases.
 The power supply system can only control the quality of the voltage; it has no control over the currents that particular loads might draw.
 Therefore, the standards in the power quality area are devoted to maintaining the supply voltage within certain limits.

Power Quality ≈ Voltage Quality (Cont.)

Of course, there is always a close relationship between voltage and current in any practical power system. Although the generators may provide a near-perfect sine-wave voltage, the current passing through the impedance of the system can cause a variety of disturbances to the voltage.

 A major part of the impedance in a power system comes from overhead lines and transformers. This power equipment usually belongs to utilities, and thus they have control over the impedance.

Power Quality ≈ Voltage Quality (Cont.)

- However, end-users have control over currents since their equipment draw currents from the system.
- Therefore, in studying power quality, it is very important to understand the characteristics of utility impedance and also currents drawn by end-user equipment.

NRC · CNRC

Type of Load	Typical Waveform	Typical Current Distortion
Single Phase Power Supply		80% (high 3rd)
Semiconverter		high 2nd,3rd, 4th at partial loads
6 Pulse Converter, capacitive smoothing, no series inductance	MWWW	80%
6 Pulse Converter, capacitive smoothing with series inductance > 3%, or dc drive	hww	40%
6 Pulse Converter with large inductor for current smoothing		28%
12 Pulse Converter		15%
ac Voltage Regulator	vvv	varies with firing angle

Equipment	Harmonic effects	Results
'apacitors	 Capacitor impedance decreases with increasing frequency, so capacitors act as sinks where harmonics con- verge; capacitors do not, however, generate Supply system inductance can res- onate with capacitors at some har- monic frequency, causing large cur- rents and voltages to develop Dry capacitors cannot dissipate heat very well, and are therefore more sus- ceptible to damage from harmonics Breakdown of dielectric material Capacitors used in computers are par- ticularly susceptible, since they are often unprotected by fases or relays As a general rule of thumb, untuned capacitors and power switching devices are incompatible 	 Heating of capacitors due to increased dielectric losses Short circuits Fuse failure Capacitor explosion

Effects of Harmonics on Equipment (Cont.)				
Equipment	Harmonic effects	Results		
Transformers	 Voltage harmonics cause higher transformer voltage and insulation stress; normally not a significant problem 	 Transformer heating Reduced life Increased copper and iron losses Insulation stress Stress 		
Motors	 Increased losses Harmonic voltages produce magnetic fields rotating at a speed correspon- ding to the harmonic frequency 	 Motor heating Mechanical vibrations and noise Pulsating torques Increased copper and iron losses in stator and rotor windings, from 5–10% Reduced efficiency Reduced life Voltage stress on insulation of motor windings 		

Effects of Harmonics on Equipment (Cont.)			
Equipment	Harmonic effects	Results	
Electromechanical induction disk relays	- Additional torque components are produced and may alter the time delay characteristics of the relays	- Incorrect tripping of relays - Incorrect readings	
Circuit breakers	- Blowout coils may not operate properly in the presence of harmonic currents	- Failure to interrupt currents - Breaker failure	
Watt-hour meters, overcurrent relays	- Harmonics generate additional torque on the induction disk, which can cause improper operation since these devices are calibrated for accu- rate operation on the fundamental frequency only	- Incorrect readings	
Electronic and computer- controlled equipment	 Electronic controls are often depend- ent on the zero crossing or on the voltage peak for proper control; however, harmonics can significantly alter these parameters, thus adversely affecting operation 	 Maloperation of control and protection equipment Premature equipment failure Erratic operation of static drives and robots 	

IEEE/ANSI Power Quality Standards by Topic			
Topic	Relevant standards		
Grounding	IEEE 446, 141, 142, 1100; ANSI/NFPA 70		
Powering	ANSI C84.1; IEEE 141, 446, 1100, 1250		
Surge protection	IEEE C62, 141, 142; NFPA 778; UL 1449		
Harmonics	IEEE C57.110, 519, P519a, 929, 1001		
Disturbances	ANSI C62.41; IEEE 1100, 1159, 1250		
Life/fire safety	FIPS Pub. 94; ANSI/NFPA 70; NFPA 75; UL 1478, 1950		
Mitigation equipment	IEEE 446, 1035, 1100; 1250; NEMA-UPS		
Telecommunication equipment	FIPS Pub. 94; IEEE 487, 1100		
Noise control	FIPS Pub. 94; IEEE 518, 1050		
Utility interface	IEEE 446, 929, 1001, 1035		
Monitoring	IEEE 1100, 1159		
Load immunity	IEEE 141, 446, 1100, 1159, P1346		
System reliability	IEEE 493		
SOURCE: IEEE Standar	ds 1159-1995 copyright © 1995. All rights reserved.		

IEC Power Quality Standards by Topic			
Topic	Description	IEC number	
General	-Fundamental principles -Definitions -Terminology	IEC Pub. 1000-1	
Environment	-Description -Classification -Compatibility limits	IEC Pub. 1000-2	
Limits	-Emission and immunity limits -Generic standards	EIC Limits 1000-3	
Testing and measurement	Techniques for conducting tests	IEC Pub. 1000-4	
Installation and mitigation	-Installation guidelines -Mitigation methods -Mitigation devices	IEC Guide 1000-5	

Disturbance	IEEE standard	IEC standard	
Harmonic environment	None	IEC 1000-2-1/2	
Compatibility limits	IEEE 519	IEC 1000-3-2/4 (555)	
Harmonic measurement	None	IEC 1000-4-7/13/15	
Harmonic practices	IEEE 519A	IEC 1000-5-5	
Component heating	ANSI/IEEE C57.110	IEC 1000-3-6	
Under-Sag-environment	IEEE 1250	IEC 38, 1000-2-4	
Compatibility limits	IEEE P1346	IEC 1000-3-3/5 (555)	
Sag measurement	None	IEC 1000-4-1/11	
Sag mitigation	IEEE 446, 1100, 1159	IEC 1000-5-X	
Fuse blowing/upsets	ANSI C84.1	IEC 1000-2-5	
Oversurge environment	ANSI/IEEE C62.41	IEC-1000-3-7	
Compatibility levels	None	IEC 3000-3-X	
Surge measurement	ANSI/IEEE C62.45	IEC 1000-4-1/2/4/5/12	
Surge protection	C62 series, 1100	IEC 1000-5-X	
Insulation breakdown	By product	IEC 664	

	Institute for National Measurement Standards Institut des étalons nationaux de mesure
2	Important IEEE Standards for Revenue Metering
•	IEEE 519-1992, Recommended Practices and Requirements for Harmonic Control in Electric Power Systems
•	IEEE Std 1459TM-2010, Standard Definitions for the Measurement of Electric Power Quantities Under Sinusoidal, Non-sinusoidal, Balanced, or Unbalanced Conditions

Voltage Distortion Limits as Per IEEE Std. 519			
Bus Voltage at PCC	Individual Voltage Distortion (%)	Total Voltage Distortion THD (%	
69 kV and below	3.0	5.0	
69.001 kV through 161 kV	1.5	2.5	
161.001 kV and above	1.0	1.5	

			monic Current Percent of I_L	Distortion		
	In	dividual Harm	onic Order (Od	d Harmonics)		
I_{SC}/I_L	<11	$11 \le h < 17$	$17 \le h < 23$	23≤h<35	$35 \le h$	TDE
<20*	4.0	2.0	1.5	0.6	0.3	5.0
20 < 50	7.0	3.5	2.5	1.0	0.5	8.0
50<100	10.0	4.5	4.0	1.5	0.7	12.0
100 < 1000	12.0	5.5	5.0	2.0	1.0	15.0
>1000	15.0	7.0	6.0	2.5	1.4	20.0
Even harm	onics are lir	nited to 25% of	the odd harmoni	c limits above.		
Current dis	tortions tha	t result in a dc	offset, e.g., half-v	vave converters,	are not allo	wed.
*All power g actual I_{sc}/I_L		quipment is limi	ted to these valu	es of current dist	ortion, regar	dless of

- Standard 1459 recognizes fundamental frequency billing, but proposes many other equations without clearly recommending a concise subset of preferred options for legal metrology and billing.
- Some of these other equations, could change the billing patterns of harmonic producing loads and of loads that only sink harmonics.
- How would billing be affected for revenue meters presently in use in comparison with the fundamental only method?

Basic steps involved in a power quality evaluation					
POWER QUALITY PROBLEM EVALUATIONS					
IDENTIFY PROBLEM CATEGORY	Voltage Regulation/ Interruptions Flicker Transients Harmonic Unbalance Interruptions				
PROBLEM CHARACTERIZATION	Measurements/ Causes Data Collection Equipment Impacts				
IDENTIFY RANGE OF SOLUTIONS	Utility Utility End-Use End-Use Equipment Transmission Distribution Customer Customer Design/ System System Interface System Specifications				
EVALUATE SOLUTIONS	Modeling/Evaluate Technical AnalysisAlternatives Procedures				
	Evaluate Economics of Possible Solutions				

	Economic Impact				
•	Work stoppages can cost a company up to \$500,000 an hour				
•	Power-related problems may cost companies more than \$100 billion a year.				
•	PQ disturbances alone cost the U.S./Canada economy between 15 and 24 billion dollars annually.				

 2008 EU PQ survey concluded: The cost of wastage caused by poor PQ for EU exceeds €150bn... Industry accounts for over 90% of this wastage.

- There are many smart grid definitions, some functional, some technological, and some benefits-oriented.
- A common element to most definitions is the application of digital processing and communications to the power grid, making data flow and information management central to the smart grid.
- Various capabilities result from the deeply integrated use of digital technology with power grids, and integration of the new grid information flows into utility processes and systems is one of the key issues in the design of smart grids.

Principal Functionality Characteristics Of Smart Grids

- 1. Active Participation by consumers
- 2.Accommodate all generation and storage options
- 3. Enable new products, services, and markets
- 4. Provide power quality (PQ) for the digital economy
- 5. Optimize asset utilization and operate efficiently
- 6. Anticipate and respond to system disturbances (self-heal)
- 7. Operate resiliently against attack and natural disaster (cyber security)

Comparison of the Current Grid and the Smart Grid				
	Current Grid	Smart Grid		
Communications	None or One-way	Two-way		
Customer Interaction	Limited	Major		
Meter Type	Electromechanical	Digital		
O&M	Manual equipment checks	Remote monitoring		
Power Supply Support	Centralized Generation	Centralized and Distributed Generation		
Power Flow Control	Limited	Pervasive		
Reliability	Prone to failures and blackouts	Adaptive protection and islanding		
Restoration	Manual	Self-healing		
Topology	Radial	Network		

How will the Smart Grid evolve?		
■ High use of renewables – 20% – 35% by 2020		
 Distributed generation and microgrids 		
Bidirectional metering – selling local power into the grid		
Distributed storage		
Smart meters that provide near-real time usage data		
Time of use and dynamic pricing		
 Ubiquitous smart appliances communicating with the grid 		
 Energy management systems in homes as wel commercial and industrial facilities linked to the grid 	l as	
Growing use of plug-in electric vehicles		
 Networked sensors and automated controls throug grid 	hout	
Increased cyber security into all Smart Grid functions		

Smart Grid = Green Jobs

KEMA Study for Grid Wise Alliance estimates:

- 270,000 new jobs in early deployment (2009-2012)
- 170,000 new jobs in steady state (2013-2018)
- Utilities, their contractors and supply chain

 Smart Meters - Advanced Metering Infrastructure (AMI) in Distribution System (Two-Way Communication) 					
(PMU) in					

PMU – Phasor Measurement Unit

- A device that samples analog voltage and current data in synchronism with a Global Positioning System (GPS-clock).
- The samples are used to compute the corresponding phasors. Phasors are computed based on an absolute time reference (UTC), typically derived from a built in GPS receiver.
- Measured phasors at different locations can be compared if the measurements are referenced to a common time base. In this way power system dynamic phenomena can be tracked for improving power system monitoring, protection, operation and control.

Conclusion

 Lots of opportunities for NMIs, Research Organizations, Regulating bodies, Standard Organizations, Manufacturers, etc. to play an important and critical role in supporting the electrical power industry in the area of Power Quality and Smart Grid, depending on the needs of the local environment/country, resources and funding.

